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PASSIVE GEODETIC SATELLITE INFLATION RATE STUDY

by Ernesto Saleme

SUMMARY

This study comprises the mechanics of the inflation process
of a sphericallballoon orbiting at high altitude. Mathematical
models suitable for the two basic stages of the process (deploy-
ment and inflation) are developed, and numerical solutions using

high speed digital computers are presented.

A method is also established for determining the stresses
developed in the skin during the inflation process. The elas-
ticity of the transverse (accordion) folds is analyzed by means
of an equivalent spring, and that of the meridian pleats by us-
ing the large deformation theory of beams.

The conditions (modeling laws) that a model test must sat-
isfy in order to accurately describe the behavior of the proto-
type are established. The effects of lack of compliance with

these modeling laws are discussed.

Computer programs for the solution of the two stages of

the process and several numerical examples are included.

INTRODUCTION

As part of the National Geodetic Satellite Program, a
Passive Geodetic Satellite has been launched into a near polar
orbit. The aluminum coated spherical satellite can be observed
from the ground as a point source of light while it reflects the
incident light. Simultaneous photographs of this light source
taken from different points on the earth surface will permit the
determination of the spatial coordinates of these points and,
hence, with an adequate network of ground stations, a purely
geometric determination of the shape and size of the earth can

be obtained.



The inflatable sphere is fabricated by joining a number of
gores of thin plastic film coated with vapor-deposited aluminum.
During fabrication the material is pleat folded along meridian
lines and then the whole assembly is placed in a long narrow
plastic sleeve and evacuated. After evacuation the pleat folded
balloon assembly is placed into a spherical canister by folding
it in a rotating accordion pattern. The canister is then evacu-

ated and sealed.

When the canister opens in space, it has been observed that
the balloon deploys by opening the accordion folds and inflates
until it assumes the final spherical shape. The first phase,
balloon erection, is dominated by the deployment of the accordion
folds while the final phase is dominated by the unfolding of the
pleat folded gores by inflation. Between these two relatively
simple phases of deployment and inflation there is a transition
phase where both accordion folds and pleat folds are being un-
folded.

Previous theoretical analyses of the erection process were
based on a single stage spherical mathematical model. The
present study has evolved a two stage model; the first stage is
a deployment model and accounts for the deployment of the accor-
dion folds; the second stage is an inflation model which accounts
for the unfolding of the pleat folded gores.

The present two stage model does nmot account for the trans-
ition phase between deployment and inflation but instead consid-
ers sequentially the deployment and inflation stages. Justifica-
tion for this procedure actually rests on the lack of an adequate
mathematical model representing the transition stage. The actual
deployment will be slower than predicted by the present two stage
model but, on the other hand, the actual inflation will start
sooner than predicted. Due to the compensating nature of these
effects, the total erection time should be close to the predicted
value. Likewise, the stresses, velocities, accelerations, etc.,



should be close to the predicted values except near the end of
deployment and near the beginning of inflation.

Finally, the scaling laws that must be satisfied by a model
tested on the ground are established in general terms.

THE INFLATION PROCESS

During fabrication, the material is pleat folded along mer-
idian lines and afterwards folded again accordion wise in a
transverse direction and placed into the canister.

When the canister opens in space, the folded balloon first
deploys by opening up the transverse folds and assuming an elon-
gated, cigar-like shape (Deployment Stagej and then inflates by
opening the meridian pleats, assuming an ellipsoidal form with a
star shaped cross section, which finally becomes a sphere (Infla-
tion Stage).

Deployment Stage

This stage is characterized by a large increase in the
polar diameter and a small variation in the transverse dimen-
sions of the balloon. 1In order to analyze the mechanics of
this stage, we make use of a mathematical model. A continuous
structure in the shapz of a shell of revolution about the polar
axis 1s substituted for the accordion folded (sectionally con-
tinuous) balloon. The substitute structure is of the same
total length and egquatorial cross section as the actual balloon.

Moreover, we assume that, during this stage, the cross sec-
tions (normal to the direction of deployment) remain invariant,
i.e. all points move parallel to the direction of deployment
(polar axis) (Figure 1).

The mass between two parallel circles, a meridian distance
ds apart will be

2m m; Xq dsl = 27 m X ds
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m are the masses per unit area of the full
sphere and the deployment stage balloon respectively.

Xy, X are the radius of the parallel in the full
sphere and the deployment stage balloon respectively.
dsl=ds is the length of the element of meridian arc.
Hence
X, ds
= 1 1
"M Y ds )

Assuming that the meridian has a cosine shape
X = a cos %—% (2)

where

a 1is the equatorial radius of the balloon during deployment.
y 1is the distance from the parallel circle to the equator.
L is the distance from the tip (pole) to the equator.

For a very elongated shape, as is the present case, the distance y
will differ but little from the distance s measured along the

meridian, i.e. we can set
s =y (3)

Hence, for the full sphere

s y
1 1
Ry COSTQLL—l (4)

X, = R4y cos
1 1 1

where y1=§1; L1=% R, are the distances to the equator, measured
along the meridian, from the parallel circle and the pole in the
fully deployed balloon. The assumption that the dimensions of
the cross section do not change during deployment implies

y

X = a cos % % = a cos %-—% = a cos § (5)



where

- Y4
=TI'X=7T__;__
=71 71 (6)
is independent of time.
Equation (1) finally yields:
y
w71
Ry cos 7 77 gy R, L R,%
o 171 _ _ "1 71 _7 1 (7Y
m =1 = mq - 3= T \//
N Ty dy l1a L 2 "1 aL
cos 7 T
The total mass of the balloon is given by
M=t4mm R (8)
171
Hence
M
LR ©)

The differential equation of motion during deployment is obtained

in the following way:

We consider an element of the balloon a distance y from
the equator. The mass of the element will be

2r m X ds = %—% cos %-% dy

and the inertia force will be

., %G,
Fl='ZfCOSZLdy'—_B—_t'2_“" (10)

where U(y,t) is the displacement and the minus sign indicates
that the inertia force is opposed to the motion. We assume that
the force due to the accordion folds is of the form

() WL
JU

i.e. is proportional to the deformation Sy (in the case of an

elastic bar of constant cross section and small deformations F(y)



will be constant). The net force exerted by the accordion folds

on the element will be then

F =9 oU(y,t
F, =% F(y) QL) g (1)

The internal pressure, =-p(V,T) is assumed to be uniform inside
the deploying balloon and depending only on the volume and ab-
solute temperature and the net force exerted by it on the element

211
wiLiLl De

d 2 d
F3 = - d—y ™ X p(V,T) dy = - 27 P(V;T) X _d.‘}y(- dy (12)

The differential equation of motion is obtained by setting

or

2
- % % cos %-% dy §—§f%451 - %? F(y) §g§§L£l dy

dx
- 2 ,T “=dy =0
m p(V,T) x 55 dy

Using Equation (5) we obtain after simplification

2
cos & Q—ES%LEl + %— F(y) §H§Z¢El

i 1o

T
A

2_2
- I f p(V,T) sin d cos ¢ = 0 (13)

Comparing the first and last terms of Equation (13) we see that
they will have the same form if we take U(y,t) to be:

U(y,t) = (L-LO) sin % % = (L-LO) sin @ (14)



where L=L(t) 1is half the length of the deployed balloon at

time t and

L (t=0) = L,
is the initial half length of the folded balloon (at the instant
the canister opens). The displacement U(y,t) 1is seen to sat-

isfy the conditions

i

U(o,t) 0
U(y,0) = U($,0) = O

Substituting Equation (1l4) into (13) we obtain:

|}
i

2
% sin @ cos @ ——§-+ (L-1L ) = F(Y) cos §
dat

- om &l p(V,T) sin § cos ¢ = O (15)

In Section IV it is shown that the force developed by the elasti-
city of the accordion folds can be expressed as: '

F(y) = F(L) cos %} %9 = F(L) cos r's (16)

Substituting Equation (16) into (15) we obtain, after simpli-

fication:

. L
L= %l {(1 - fg) F(L) + 2 a? p(V,T)J (17)

where the dots indicate differentiation with respect to time.
Multiplying both sides of Equation (17) by

Ldt = dL

and integrating, we obtain:

/iﬁdt=[iglgdt‘;"=M‘ﬂf (1'_)F(L)+2ap(VT218)
Lo



or

L
_ L
[ = %% = F‘;lf.f [(1- T2) F(L) + 2 a? p(V,T)] dL.  (19)
L
(@]

From which we finally obtain

L (20)

L
. d
b [T Lo 2
L i [ [(1- 29 FL) + 2 a p(V,T)J dL
L
(o]

The internal pressure p(V,T) 1is made up of two parts:

a) The pressure due to the residual gases left inside the
balloon during fabrication is the first part. Assuming that
they behave like perfect gases, their partial pressure will fol-

low the law

PV PV
—%}-= g © - constant
o
hence
\Y
oT
Pr T P T T (21)
o}
where
v,V are the initial and present volume enclosed by

the balloon.

To’T are the initial and present values of the absolute
temperature of the balloon.

p,sP, are the initia} and present values of the pressure

due to the residual gases.

b) The pressure due to sublimation of the chemical powders,
if any, that are placed inside the balloon for the purpose of
completing inflation and sustaining the spherical shape by pro-
viding the required internal pressure once the full inflation is

attained, is the second part.



The corresponding partial pressure follows the Classius-Clapeyron

equation
Cy
log P. =Cy - 7 (22)
where
P is the pressure generated by sublimation.
T is the absolute temperature.
Cl’CZ are constants depending on the nature of the chem-

icals. The total pressure inside the balloon will be equal to
the sum of the two partial pressures

P=7p. + P, (23)

In Appendix A it is shown that, for the chemicals and tempera-
tures here considered, there will be only a small change in tem-
perature during the whole process. Moreover, the rate at which
heat is accumulated in the balloon during deployment is larger
than the rate necessary to maintain the sublimation pressure.

Hence, we can write

\)
= 2
Py Po ¥
p. = constant.

c
Taking into account that during deployment the volume is propor-

tional to the length we have finally

L

P=7p, + P, (24)
In Section III, the following expression is derived for F(L)
f(é_
) Iy
F\L) = CO -“];2-— (25)
with
£ l"_. = C O < _L_ < O
L1 1 - L1 -
(26)
f(é— = A-B & +-c(£—)2 -D L—)3 +-E(l‘---)4 a<i < 1.0
Ll) L1 Ll (Ll L1 - L1 -



where ﬂ3 2 3
Co =I5 N n-Eths C = 7.05571611
Cl = (0.29845520 D = 5.74280591
A = 0.49614662 E = 1.82244592
B = 2.63150274 a = 0,45694658

Substituting Equation (24) and (25) into Equation (17) we obtain,
on account of Equation (26):

2 C1 Lo

v 2 L
L=x|C o7 -L—)+2a(p +poL) 'IT'
L
~ L
. 2 ABL+C(L1) ( ) ( )
L =3%5|C 5 (
M_o L
L 27)
+ 2a%(p_ + olla < 2~ < 1.0
Pe TP T |5 Ly = °°

Multiplying both sides of Equation (17) by 2Ldt = 2dL and inte-
grating we obtain finally:

. 4L Cc c L
_ o o) 1 0 2 L _
o
1/2
L
+ polog — ]] OS-——Ll <Q
2 2 2
L. 4oLk, | C, [ C . L, A L, L 1
M LZ ) aEl 2 L aLl
o
L L L L L
+ (A+B L°) = GLL - 1)- (B+C =T log 57—+ [C+D -
1 1 1 1
2
L L L L
Q L _ a)- 1 DHE =2 o [ ( L \ _ GZ] + E o
1/2 (28)
3
L 3 L
[(EI— - a ]} CISIE—:El

In Appendix B a computer program for the integration of
Equation (20) using Equation (28) with provisions for the case
when Equation (18) cannot be readily integrated is presented and

numerical examples are worked out.
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Inflation Stage

During the inflation stage the balloon increases its equa-
torial dimension and at the same time decreases its polar di-
ameter. In this way the balloon passes from the elongated shape
at the end of the deployment stage to the final spherical shape.

Referring to Figure 2, consider the dynamic equilibrium of
an element of the shell, of area x d& ds, between two adjacent
meridians and two parallel circles. The mass of the element
will then be

m x dO ds

where

m is the mass per unit area of the shell,

X is the radius of the parallel circle,

d® 1is the angular distance between the meridians, and

ds 1is the meridian distance between the parallel circles.

Let X, yV be the accelerations in the horizontal and vertical

directions. Then the inertia forces will be
- mx de ds x (29)
-my do ds y (30)

where the dots indicate differentiation with respect to time.
Let Fy be the membrane force per unit length of meridian. Then,
forces of magnitude Fg ds and direction tangent to the parallel
circle will act on the lateral sides of the element. The resul-
tant of these forces will be

Fg ds d (31)
directed towards the center of the parallel circle.

Let F be the membrane force per unit length of parallel
circle in a direction tangent to the meridian. A force will act

on the upper side of the element

- F¢ x d@ cos ¢

12



Full sphere

Meridian Section

FGdS Horizontal Section

Figure 2 Second Stage-Inflation
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in the horizontal direction and a force

F¢ x dO sin @

in the vertical direction.

On the lower side of the element we have
d

Fé x dO cos ?S + 'BE (Fé x dB.cos QS) ds
in the horizontal direction and

- [F¢ x d8 sin 4 + %E (F¢ x dO sin §) dsJ
in the vertical direction. The resultant of these forces will
have components

%; (Fy x cos $) d6 ds (32)
in the horizontal direction and

- (F, x sin 4) d@ ds (33)

ds vV b

in the vertical direction.

The internal pressure p acting on the element gives com-

ponents

p x dO ds sin ¢ (34)
in the horizontal direction and

p x d6 ds cos & (35)
in the vertical direction.

Combining Equations (29), (31), (32) and (34) and Equations
(30), (33) and (35) we obtain after simplification

mxx = p x sin 4 - Fg + %E (F¢ x cos @) (36)
mxy = p x cos ¢ - %E (Fé x sin ¢#) (37)

the differential equations of motion.

14



The total mass between two parallel circles remains constant

during the process, hence:

s
m - 27 x ds = my - 27 Xq ds1 =m - 2r Ry sin E% ds1 (38)

where

m,my are the mass per unit area in the balloon and the
full sphere respectively,

ds,dsl are the element of the meridian arc in the balloon
and the full sphere,

X,%y are the radius of parallel circle in the balloon
and the full sphere, and

Ry is the radius of the full sphere.

Equations (36) and (37) can be written

mX=pxsind-Fy +3 (Fyxcos 6) (39)

'rES;=pXCOS¢S~%—S—(F¢XSm¢) (40)
where

- . s dSl

m = mx = my R1 sin ﬁ; ds (41)

During this stage, the balloon offers little resistance to
change in the circumferential direction (opening of the meridian
pleats) while its deformation in the meridian direction requires
stretching of the skin. We then may assume that there is no de-
formation in the meridian direction, that is the distance between

two points along the meridian is invariant with respect to time, -

ds = \/dxz + dy2 = ds1 (42)

independent of time.

or

15



The assumption that the elastic strains can be neglected
(as compared with the deformation due to inflation), implies
that the length of a parallel circle cannot be larger than the
length of the corresponding parallel in the full sphere, i.e.

x £ %1 (42')
Multiplying Equation (40) by ds and integrating, taking into

account that

cos p = %%

we obtain

.

Fy x sin $ =p 5 - J m y ds
o

7~
N
(9%
-

Equation (43) is equivalent to the differential Equation (40)
hence, the system of the differential Equations (39) and (40)
can be substituted by the single differential equation

mX=p x sin § - Fg + %E (F¢ x cos @) (39")

where, by Equation (43)

. 2 S
_ 1 ) - ..
Fg = xsin @ [P 7~ f m y dSJ (44)
o
The hoop force Fg due to the opening of the meridian pleats
is a function of the radius x of the parallel circle
Fg = F(x) (45)

In Section III, an expression for F9 as a function of the
parallel radius is derived and is found that in general, it

can be neglected.

16



The differential Equation (39) together with the definition

Equations (44) and (45)

and the constraint conditions Equations (42)

and (42'), can be solved numerically by a step by step procedure

in the following way.

Let us assume the
order to determine the
that the gas pressure

remain constant during

p=rp, =P (V,,T))
x = 3(.n+1
y - §n+l

where Vn’Tn

are the volume and temperature at time ty

problem solved up to a time t=t In

position at t=t s we assume

n+l=tn+Atn+1.
p and the accelerations x and y
the time interval t,st<st
\Y
(e.g. P =P, vﬁ , Boyles Law) (46)
(47)
(48)

By

integrating Equation (47) and (48) with respect to time from =

to t

we obtain the values of the velocities and displacements

n+1
at t=tn+1
Xo4l = Xn * Fpa Otnel (49)
Yn+1 T in + S;n+]_ Atn+l 2 (50)
_ . n+1
X +1 = *n + XnAtn+l + xn+1 ~—7——- (51)
— + v AE + Atn+1 59
Yn+1 T Yn Y/ tnt1 yn+1 -2 (52)

The values of X 41

iteration process:

and yn+1

are obtained by the following

. . **0 .
1. Agsumlng a starting value X 41 for x +1,determ1ne
X 11 from Equation (51)
/ 2
o _ . 320 HEL4y
bl = ¥n T Fplth T X 2 (a)

17



Substitute Equation (a) into Equation (45) to obtain:

o] (o)
F = B(xX..1) b)

. o . o
Determine cos ¢n+1’ sin ¢n+l by

cos 0. = ax?1+1
n+l as
<~ 0O 2
0X
. o] +1
sin §_,q = W/Q - (—3%——) (c)

Determine yg+l from Equation (42)

S ) 2
o _ - le)
Y+l ~ _[ ds dxh41 (d)

ki
7Ry

Determine yg+1 from Equation (52)

.0 _ 2 o _ - Y At (e)
Yn+1 2 Yn+1 yn Yt tnst €
Atn+1

Determine Fg from Equation (44)
n+l

o s
o _ 1 Xn+l — ..0
F¢n+l T 7o R [pn 7 __[ m Yo+l dSJ(f)

X
n
Determine §i+l from Equation (39)

~1 1 o . o o 5] o o . o
X == |p_. X sin & - F + F X sin ¢
n+l [ n “n+l n+1 9n+1 oS ¢n+l n+l n+l

(8)
Repeat steps (1) through (7) until there is no change

in the values of the parameters. In practice, the

=1

process is stopped when the difference between two
successive values of a given parameter, say x, is less

in absolute value than a prescribed amount.

18



ELASTICITY OF THE FOLDS

Accordion Folds

In order to evaluate the force F(y) due to the elasticity
of the accordion folds, we assimilate the folded balloon to a
spring so that F(y) is the spring force at a distance y from
the equator when the total distance between the ends is 2L.
Figure 3 shows the centerline of a general fold between two con-
secutive bends. Assuming that the cross section at the bends re-
mains horizontal, the differential equation of the elastica can
be written in the notation of Figure 4.

e, 9 - p (2 %) (53)
Assuming that the moment of inertia J remains constant along

the fold, we obtain by differentiation:

2
By 98 - - p & - poing (54)
ds

where we dropped the index k. Multiplying both sides of Equa-
tion (54) by d¢ = —%g— ds and integrating we get:

(%g—)z = —%%— [cosé - coségj

From which

as = -2 dg (55)

Vcosg - coséz

Integration of Equation (55) yields

)
2 L
EJ dgé
L= | ds =\/-Z
j ) 2P 'O/ %OS¢ _ COS¢£ (56)

o]
Let
sin —g— = k sin®
é (57)
k = sin T

19
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Figure 3 Centerline of an Accordion Fold

kth
Bend

Figure 4 Equivalent Cantilever Beam
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Substituting Equation (57) into (56) we obtain:
il
s = /B j2~——ﬁ———- = V5L k@ (58)
£ Vi-k? sinZe

where K(k) is the complete elliptic integral of the first kind.
Multiplying both sides of Equation (55) by cosd we obtain:

= _ j/ EJ cosd dg
dy = ds cosg = 5p Wlfcosé oo
2

Integrating we get

B ’ 8

h = 6[ dy = fds cosg ="\/ gg JVE%?%?% . (59)

o)
Which, by Equation (57) becomes

20
= . /EJ f(l -2k? sm) de _ \/_%i_. [2E() - k()] (60)

\[1 k sin 9

Where E(k) is the complete elliptic integral of the second kind.
From Equation (58) and (60) we obtain:

h , _E
N K

taty

-1 | (61)

Assuming all the folds to have the same height and the same

length, we have

F. . H _ 1 2L
2 =72~ N
2L
! 1
b= —x (62)
b L
J) L

1

21



—2 —
By plotting %? against —%— for various values of k, it was

found that P could be expressed as

2.2
N“EJ L

P = O f (=) (63
4 L2 Ly )

Where f(—%—) is given approximately by:
1

f(%—) = 0.29845520 (O_<_—£—150.45694658)
L _ L L (2
F(—-) = 0.49614662 - 2.63150274 (1) + 7.05571611(—)
Ly Ly Ly
-5.74280591(—1=)> + 1.82244592 ()%
1 1
(0.45694658 < = < 1.0)
Ly (64)

The moment of inertia Jk of the kth fold can be taken as:
s

- k
Jk = Jocos ﬁz—
Where
JO is the moment of inertia of the equatorial cross
section,.
Sk is the distance, measured along the folded baloon,

from the center of the kth fold to the equator.

In view of the large number of folds, we may substitute the dis-
crete distribution of the moments of inertia by a continuous

one and write

J(s) = J cos —%I = Jocos-Q%— —%— (65)
The moment of inertia JO at the equatorial cross section is
given by:
o 2 12 s 24 21 12 1's

22



where

n = number of meridian pleat folds.
21rR1

a; =4 =  equatorial width of the meridian pleat folds
hS = skin thickness.

Making F(y) = P of Equation (63) and using Equation (64) and (65)
we obtain finally

L
£(—-)
F(y) = ﬂ3 2 3 Ly Ty _ Ty
y) = g N'n ERjhy ——p=—cos 3 £ = F(L) cos 7§ (67)

as the force due to the elasticity of the accordion folds.

Meridian Pleats

During fabrication the balloon is folded along meridian
lines and placed inside a plastic sleeve which is then evacua-
ted. As a consequence the meridian pleats offer a relatively
high resistance to opening, while on the other hand, the thin
plastic skin offers very little resistance to bending. Hence
we may represent the skin between pleat folds by a very flexible
beam whose ends are subjected to parallel displacement with re-

spect to each other.

On account of symmetry, it is sufficient to consider one-half of

the skin between two pleats.
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The differential equation of the elastica for the resulting can-
tilever beam can be written

~EI_ d

Sl=E1 gL - Fg. G’ - ¢) (68)
where g is the modulus of elasticity of the material

h

I= I% is the moment of inertia of the skin per unit

length of meridian

F, is the hoop force per unit.length of meridian

e
p is the radius of curvature of the elastica

at the point

¥ is the angle that the tangent to the elastica
makes with the g-axis

s' is the distance from the origin to the point,
measured along the elastica

£ is the abscissa of the point in the deformed state
£' is the abscissa of the mid-point in the deformed
state

Differentiating Equation (68) with respect to s' we obtain

2
3?2 = -8 -3%. = -p? cosy (69)
s
where 62 _ EQ
T EIL

Multiplying both sides of Equation (69) by g%;ds‘and integrating

we obtain
( )2 2 (sinwﬂ - siny)

or

1 dy
ds' = (70)
BV2 Vsiny, - siny :
Where tan ¥, is the slope at the end of the cantilever. Integra-
tion of Equation (70) yields

L = Y (71)

5\/ VSan -~ siny
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where 2{ 1is the distance between pleat folds.

Let
1+ sing, = 2k2
2 . 2 (72)
1 + siny = 2k“sin” 6

By Equation (72) Equation (71) yields

T
2

e = [ d6 = F(k, D) - F(k,8,) (73)
90 \/l-kzsinze

where F( ) 1is the elliptic integral of the first kind and

90 = sin-l -—]'-':
KV 2
Multiplying both sides of equation (70) by sin ¥ we obtain

ds' sin ¢ = dn = 1 sing dy (74)

ﬁ\ﬁz Vsin wﬁ - sin ¥

Integration of Equation (74) yields for the end deflection:

.
7//ﬂ ~2- 2
s = 1L f siny dv _1 f 2k” siny - 1 4
— 3
pV2 Vsin v,-sin 4 o, \/1-k2sin? 4
Finally
1 -
5= 5 [F(k, 7) - F(k,8)) - 2 [E(k, 3) - E(k,eo>]] (75)

where E( ) 1is the elliptic integral of the second kind.

By Equation (73) Equation (75) can be written

: E(k, %) - E(k,9
S = 1-2 ( 3) (%) (76)
' F(k, 3) - F(k,0,)
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From Equations (68) and (70) we obtain, at £=0, y=0

g NZstw,o V2 (2% - 1) (77)
: Re F(k,J) - F(k,0,)

Equations (73), (76) and (77) give Bg = —=— , 6/ and £'/i

as functions of the parameter k. By plotting FQEZ/EI against
6/4 for various values of k it was found that Fe can be ex~
pressed, approximately, as

5

EI g <
F, =3 0= % <0.9
® 2 1-115 §2 ¢
5 (78)
0.12% 1 - (7)
Taking into account that
Ie) = ﬂ._X i = lrr_x_l
Ry 1
where
X,x, are the radii of the parallel circle of the
balloon during inflation and in the final
sphere respectively
ny is the number of meridian pleats
Equation (78) can be written
X
n 2 X
= 1 1 X
FQ_B(FF;{I) EI x? 0._<._X—1<0.9
l -1.15 (=—
X
1
x (79)
n 2 X
Fo = =)  0.17 7 09=5p<ho0
1 - (&
*1
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A sample calculation is carried out below for PAGEOS with the

following data.
E=6.6x 10> 1b in."2 = 6.6 x 10° x 6.8947 x 10% = 4.55 x 10

h,= 0.5 mils = 0.5 x 1073 x 2.54 = 1.27 x 10~3 cm
3
h
I = 5 =1.7% 10710 o

For the 80 degree parallel

x; = Ry cos 80 deg = 292 x 30.48 x 1736 = 264.6 cm
n; = 418
*1
L= 71 —— =1.99 cm
ny

Assuming 95 percent inflation, i.e. x/x1 = 0.95 we have,
using the second of Equations (79)

10

4.55 x 1019 x 1.7 x 10719 0.95 1

= 155 dy cm
0.12 x 1.99% 1-0.95%

FG =

-~ 155 x 5.71 x 10°% = 8.85 x 10™% 1b in.” !

and the corresponding hoop stresses will be

-4
0 = h_e_ - 8.85 x l(_33 = 1.77 1b in. 2
s 0.5 x 10

It can be seen that to assume Fe = 0 will not affect appre-
ciably the results.
The above derivation has been based on the assumption that

the axial deformations of the cantilever are identically zero.
It is evident that this assumption cannot hold for very large

deformations (&6/f very close to unity) as Fg becomes infinite

for &6/5 = 1.
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SKIN STRESSES

Deployment Stage

During the deployment stage, the height of the accordion
folds increases by partial opening of the meridian pleats while
the length of the parallel and meridian circles remain constant.

;
b 1 ¥

L)JL

Considering a section A-A through an accordion fold we

have for the membrane stresses the expression
o = Bn- (80)
1 s
where P 1is the internal pressure and hs the skin thickness.

The height H of an accordion fold can be taken approximately as

2L
H = Rb = -N— (81)
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where

Rb is the outside radius of the bend

2L 1is the total length of the deployed balloon
at time t

N is the number of accordion folds.
The foregoing derivation was based on the assumption that

the accordion folds remained in contact, i.e.

7R
b
z>—2—=§L (82)

where / 1is the length of the fold.

Assuming all the folds to be of the same length

D
6= 5 (83)

where D; 1is the sphere diameter. Substituting Equation (83)

into (82) we obtain

2L < Dy (84)
Hence, Equation (80) becomes
L
o, = B (2L < D;) (80")

Consider now a section of the deploying balloon by a plane
parallel to the direction of the accordion folds. The hoop

stresses will be given by

o, = B2 dy (85)
2h ds
s 1

where
2x is the diameter of the deploying balloon
at the point

dy is the distance between two adjacent
parallel circles

ds is the meridian distance beétween the
parallel circles in the full sphere.
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By Equations (2), (3) and (6), Equation (85) yields

= pa

g
2 K
S

L“It“

cos @ (86)
1
Finally, the membrane stresses developed in a section normal to
the direction of deployment will be
2 2

= p e TX = pX
°3 = Yrxh 7% h (87)
17s 17s

which, by Equations (2), (4) and (6) can be written

pa LO
03 = 75— -L—l' Ccos Z (88)
S

The computer program prints the values of the hoop stresses 0,
given by Equation (86) at the Equator (@ = 0).

Inflation Stage

The hoop stresses during the inflation stage are given by
9 = = (89)

where Fy is given by Equation (79). As shown in the sample
calculation of Section III, the values of Sg will, during

most of the inflation process, be very small,

The meridian stresses are given by:

2vxF¢ xFé
°¢ T Zmxhg T XAy (90)

The computer program developed in Appendix B gives the values
of the meridian stresses for a series of selected points along

the meridian at various stages of inflation.
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Stresses at the End of Deployment

.At the end of the deployment stage, the coordinates and
velocities of the points in the skin satisfy the relations

X = a co L —Z-l-=a
S 5 Ll cos

. 'y Y]__I'-‘ R
yi~ 151“T L, - 1 Sin

LENE

The elastic force acting on a cross section a distance ¥y from
the equator will be

ouU y, oU
- 5U=_ , 1 _ 21 71
F(yl) yl E 2;rxlhS 5Y1 27 EhSR1 cos Rl 5Y1

where E 1is the modulus of elasticity of the skin and U, =14

um

o caittlihkha-g e 4
liIT Ccyulilulruill COonxlL

ion
L.L Ly

gur
The net force exacted on an element of

Ju
F = - __a ___1 E c2d a S
F & F(y) 2uER Ry —&- cos

Y1 aUl \
Rl Sy (1i1")

By Equation (10), (11') and (12), the differential equation of

motion becomes:

2
y 3 U (yq,t) y
- —%— —%~ cos —Kl dyl ———£—7£—~— + 2:iEh Rl \8 cos L
1 1 ac? s L oy Ry
]
dU; (yq,8) 2 y y (135
-*l;—l———d 4 2 a cos 1 sin L d = 0
dy; Y1 “TPL Ry R, ° R, V1

Where py is the internal pressure at the end of deployment.
Assuming Ul(yl,t) to be of the form:

o .71
Ul(yl,t) = Ul(t) sin EI~
Equation (13') becomes after simplification

. 4ﬂEhS _ 4”32
U (6) +—— Uy () = —3r— P
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whose solution is

— a2 ~ [ 4mEh ~ / 4mEh_
Uy(t) = g~ py T Acos Y —g— t+BsinV ——t

)

The constants A and B are determined from the initial con-
ditions

it
o

U]_ (Yla t=0)

yielding
2
ppa
A= ~ ——
Ehs
/M _ g
B = Vimer ™
S
Finally
Py . ﬁ/ hrEh \/é;:- /4'rrEh ]
Up(yyst) = EB"‘ ( -cos 7ER- L sin
. y
sin 5—
Ry

The longitudinal stresses are given by:

2
oUq (y , ©) P
04(y1,t) = Ee (y,8) = - gl[ L (-

4WEh 4ﬂEh
L sin ————Ji t| cos ﬁ——
1

The maximum value will occur at the equator (yl =0):
E pla2 4wEhS
oé(O,t) = X R (l-cos v 6t

\/‘75’- . - /4ﬂEhS ]
+ Z}W_EB? L sin ——M———"t
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Stresses at the end of the inflation. - At the end of the
inflation stage, the points in the balloon surface have reached

the spherical surface with a certain velocity. The stress analy-
sis of the skin can now be carried on the assumption of small
deflections and linear elasticity. The displacement components
satisfy the differential equations:

2
2 m R 2
[§—7-+ cos¢-—§$ - (cotzé +y 4+ = 1 —Qz}lr+ (1+v) 9 w=20
3 mSR% 2 (91)
(1+v) [—33 + coté} u + [2(1+v) + 5 S%Z w=20
where
u,w are the displacement components in the
meridian and radial direction respectively.
Eh
D = ; is the membrane rigidity of the skin.
l-v
v is Poisson's ratio for the skin material.
Rl,é are the radius of the sphere and collatitude
angle respectively.
p is the pressure inside the balloon at the end
of inflation.
m_= ——MQ— is the mass per unit area of the skin.
47rRl
The solution of Equation (91) is
1
u = UnPn (8) sinuht
PR2 ©2)
1- 1 ' .
w = —51 ER + E:\ﬂnPn(¢) sina, t

where Pn( ) 1is the Legendre polynomial of the first kind of
order n and the prima denotes differentiation with respect to
¢. Substituting u and w into Equation (91) we obtain:
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2
[Qn - n(n+l) + l-v] u, + (1+V)V0n =0

(93)
2 -
n(n+l) (1+v) Un + [Qn - 2(1+v)]¥dn =0
where
2 msR% 2
e (94)

The requirement that Eyuation (93) have nontrivial solutions,
leads to the frequency equation:

2

2+ (1-v¥)(a-1)(n+2) = 0 (95)

szfl - [n@m+1) + 1-3v]a

The solution of Equation (95) is

2 _ n-1) (n+2 3(1+v 1+2v) (1+v
Qn - 2 [l i o n+2 [1 +t 2 s n+
2 1 (96)
1 + v 2
+ (3 Zn-Iiin+25) } J

Differentiating Equation (92) with respect to time, we obtain

the velocity components

Ll.(iﬁ,t) = Z U w P'(d) coswt

nnan

(97)
Z W nanPn (4) coswt

w(g,t)

The symmetry of the problem with respect to the equatorial plane
requires that n be even. Considering only the first two modes
we have:
u(4,t) = - =~ Up sin 24 sinm,t
-V

PR.2 w (98)
1 1 . 2 .
W(é’t) = —-—2— Th + W0 51nc00t + < (BCOS Zé + 1) Slnwzt
S
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l:1(9!5,11) = - —%— Uyw, sin 2¢ cosw,t
W2m2 (99)
w(d, t) =¥00w0 cosw t + (3 cos2¢ + 1) coswyt

02 = o (14v)

msRl
) . f - 2
“’% = *“222 —zr—7+3 i'\ﬁ 14-—+3") - (1-v?) (100)
mst

The stresses are given by:

2
PRy E

o, = +
b Zh (1-v2) R,

[ (1+v) Wosin w,t

+ [—lzl W2 (3cos2f+1) - 30, (cos 2¢ + VC082¢)] Sinwzt]

2

PRy . +
%9 = 7R + % [(1+v) W051nugt +—[lzxwé(3c052¢+l)

s (1-v5) Ry

(101)
_3U2 (cos2¢ + vcoszé)] sinwzt]
pR% 1
E . +

9 = 3R + > (1+v) W051nwot + —5342(3c052¢+1)

s (1-v7) Ry

-3U

N

(coszé + vcosZé)] sinwth

By equating to zero the derivative of the stress with respect
to ¢ we find that their maximum (or minimum) will occur at
the pole (4 = 0) or the equator (4 = w/2). At the pole we have

P} E
° = % T TR, M ETTD) R,

[“%sinwot + (W2-3U2) sinwzt}
(102)
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while at the equator

oy = ;Ei + (1-VE) Rl [(l+v) LS 31nw t - (liz—w2 - 3U2)
sinwzt}
LRy E (1+v) w_sino 1+v 3 (103)
09 Zhs (l-vz) Rl.[ v) w sinw t - (—2— 9 = 3VU )
sinwth

The absolute maximum of the stresses will then be: at the pole

6% " Zﬁz O [lwol + |y - 3UZIJ (104)
At the equator
o4 = gii + (l=vg) R, [(1+v) ,wol + 'l;v W, - BUZU
(105)
og = gii + (l-vg) R [kl+v) 'wol + '1Zv w, - 3VU2l}

The coefficients W U2,VJZ are determined by evaluating the

0’
total momentum in the horizontal direction and the total kinetic

energy of the balloon at the end of inflation. Thus:

E:ka =.[ m R1 sing (ucos @ + wsin $) dé
(106)
n -
L Z M (2 + 52y = L ImSR%simﬂ w@? + w?) a4

(o]
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From which we obtain

M W ,+6U
ZMk}'{k =75 [Woa)o - =g wz]
w2 + 6U2 (107)
_ Z:Mk(*ﬁ + yﬁ) = —%5—-[w§w§ L2 o2 wg]
The coefficients U, and W, are related by Equation (93):
2(1+v) - gg 108)

Up = 5(IFv)
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VOLUME OF THE BALLOON DURING DEPLOYMENT

Referring to Figure 6, the volume of the kth fold will be
given by: L

2 7
a H s s + H, a
_ o'k 2k-1 2k-1 k™1
Vk = ’[ [cos Rl + 2 cos Rl ] d11
o)
i
. So+1” (Sox-1t —7 i) et
o'k Sok+1
+ [cos
2 Rl
o}
s + 1 H +¢
+ cos 2k-1 R 2k }dt +
1
a H s H, a
+ 2ok J‘[ os S2HL 4 5 cos 21~ M2 Jas,
ar 1 1
2
a H R H 2 2
_ Yokl d k k .
= 3 [ ) Rl cos Rl + 5 sin —ﬁf-+
L, + %~ H s
+ sin k % k ]cos "o
1 1
where

28y = Sop41 T Sok-1 is the length of the kth fold.

S -
_ Sok+1
Sk T 7

Sok-1

is the distance along the surface
of the balloon, from the center of
the kth fold to the equator.

In practice, the length 2£k and the height Hk of the accordion
folds will be small as compared to R; the sphere radius. Hence

we have:
s

k
ka?_aon}Z.k cOos —ﬁi

and the total volume will be

N_
5 -
v = 2a_ [H2, + 2 %ﬁ by, €05 . ] (109)
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Side View of an Accordion Fold (Schematic)
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Where 'N is the number of accordion folds. Assuming all the
folds to be equal, i.e.

= = eea = _ 2L

= = = - i) 1
zo ﬂl £ 2 N

then ”Rl
Sk = Zk@ = k_ T
% (110)
Ga R, L
m 1

V. =2a Hi [1+ ?-kzl cos k —]=2a 1l cot H-~—p

The effective width a, of the equatorial cross section is

given by (Figure 7):

a, T 1\/ C—jg-) ]

where n 1is the number of pleat folds. For large n, we have
approximately
21rR

a_ = a, = L

o) 1 n
Finally: 2

81|Rl L 2
V = ——-n—N'—— = ma"L (lll)

The radius a of the equivalent circular cross section at the

equator is then:

_ 8
4 = Vnn Rl

At the beginning of the inflation process, the length 2Lo of the
accordion folded balloon is equal to the polar inside diameter
of the canister, D, and the initial volume V_ is

o] nN
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Figure 7 Cross Section of the Equatorial
Fold (Schematic)

41



MODELING LAWS

Deployment Stage

This stage is governed by the differential Equation (26):
2 L L

d°L _ 27 _ _o 2 o

527'— T [F(L)(l f_) + 2a [Pc +p, f—]J (113)

where F(L) 1s given by Equation (25).

For a geometrical similar model we have

Ly = Rﬂp
where £, ¢ are corresponding dimensions in the full-scale
balloon and model and A 1s the scale factor. The model will

satisfy the differential equation

2
d L L L
m _ 2T om 2 _ om
dt 2 M |'Fm(Lm)(l "L )+ 2am [pcm plrn + Pom L }} (114)
- m m m

where Plm is the outside pressure acting on the model (test

tank pressure).

Let
Mm = uM
t. = Tt
m
i.e., |, T, are the mass and time scale factors. Equation (114)

can be written

2 L L
A o dL _ 2w o 2 - 0
or
2 2 F_(AL) L L
d°L _ AT 21 m _ o - "o ,
Py AT [—;’z—(l L) +2a [pcm Pim * Pom T ”Ulb)
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Comparing Equation (116)with Equation (113) we obtain the
following modeling conditions

a) Ao 1

b) F_(A\L) = 7\2F(L)
¢) Pem "~ Py, = P
d) p_, = P,

Hence

a) The time scale factor 1 will be

= \/E
TE VR

b) The elasticity of the accordion folds must have the same
functional form in model and full-scale balloon, and its scale
factor must be equal to the square of the linear scale factor.
Both conditions are satisfied if the model is folded in the same
way as the balloon and the bearing force is proportional to the
square of a characteristic length. As shown in Section III, the

force F(L) can be expressed approximately as

£ L
ﬂ3 2 3 L1
F(L) = zg~ N nERjhg ——p

Then, condition (b) will be satisfied if
3
sm_ _ E__
h E
s m

If the model is made of the same material as the balloon, this
implies that the thickness must be scaled also as the linear

dimensions.
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c) The pressure due to the subliming chemicals in the
model must be equal to the pressure due to the subliming chem-
icals in the full-scale balloon plus the test tank pressure.
This implies that, either we must use for the model test a chem-
ical with a higher subliming pressure or carry the test at a

higher temperature or both.

d) The residual gas pressure must be the same in model and

and full-scale balloon.
Inflation Stage

The behavior of the balloon during this stage is governed
by the differential Equations (39) and (40)

X = % {px sin ¢ - Fg + %E F¢ X COS dJ
m
(117)
_ 1 d .
y = = px cos ¢ - 35 F¢ x sin ¢
m
where
- . S M . s
m=m; Ry, sin =— = sin =
171 Rl 4WR1 R1
again, if A, 11, T are the length, mass and time scale factors
we have for the model
2o %= R A - ) x sin ¢ - F + 0 F X cos ¢
2 1L Pnp = Pim 2] Js “ ¢
T m m
(118)

%7 y = % [%(pm - le) x cos ¢ - %E F¢m x sin é]

comparing Equations (117) and (118 we obtain

2
NT _ -
a) —_IJ_ = 1 C) F¢m 7\F¢
b) Fg, = ?*Fy d) p, - Pip =P
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Hence

a) The time scale factor is given by

=&

b) The hoop force Fe must be scaled as the linear dimen-~
sions. This condition will be satisfied if the hoop force is
proportional to the parallel radius as for a linearly elastic
body. 1In general, it will not be possible to satisfy this con-
dition exactly (the thickness of the shell can not be scaled as
the other dimensions). However, since this force will usually be
small as compared with the others, its failure to satisfy ex-
actly the scaling conditions will not seriously affect the re-

sults of the scale test.

c) The meridian force F,; must scale as the linear dimen-

sions. Solving the second of Equations (117) for Fd we have
297 F¢ x sin ¢ = 7 p x2 - M(s) yG (119)

where M(s) is the total mass of the shell above the point under
consideration and Ya the ordinate of its centroid. TFor the

model we have then:

. 2 2 A ..
ZHXFém x sin ¢ = 11 A (pm Py X - %7 M(s) Yo (120)

Finally, on account of (a) and (d)
F = NF
4 4
d) The internal pressure in the model must be equal to the
internal pressure in the full-scale balloon plus the pressure in
the test tank, at all times, that is

\Y
1m + p

\Y
- + = —-];
cm Plm Pom Vm Pe oV

p
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where
Vi is the volume at the beginning of the inflation
stage (end of deployment)
v is’ the present volume during inflation

P. is the pressure due to sublimation of the
chemicals

p is the pressure due to the residual gases at
© the beginning of the inflation stage (end of
deployment).

The volume in model and full-scale balloon are related by:

\Y = XV
m

‘Hence, condition (d) requires

Pem Po + Pim

Pom = Po

That is, the pressure due to the subliming chemicals in the
model must be equal to the pressure due to the subliming com-
pounds in the full-scale balloon plus the pressure in the test
tank and the residual gas pressure must be the same for balloon

and model.
Note on the Scaling Laws

In Appendix A it is shown, that during the deployment stage,
heat is accumilated in the satellite at a rate larger than neces-
sary to maintain a constant sublimation pressure wnhile, during
most of the inflation stage, the situation is reversed. This
implies that, dufing deployment the pressure will follow the law:

Vo
p=p. tP, T (121)
with
P, = pressure due to sublimation of the chemicals
at launch temperature
Po = pressure due to residual gases at launch
V .,V = initial and present volume of the balloon

during deployment
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while, during inflation, the pressure will be approximately

P = P - _ (122)

total internal pressure at the end
of the deployment stage (beginning
of the inflation stage)

vy = volume of the balloon at the end of
the deployment stage (beginning of
the inflation stage)

\Y = present volume of the balloon during
inflation

ol
1
C
(9]
i
o
y
I

The scaling laws require that, for both stages

Pem =~ Pnt Pe
(123)
Pom = Po
By Equation (121) and (122), Equation (123) becomes
Pem = Pim™ Pc
(124)
Pom ~ Po
for the deployment stage and
I;)cm = Fim
v (125)
— o
Pom = P = Pc + P, VI

for the inflation stage.

Hence, for correct modeling, it will be necessary to pro-
vide some source of heat so that the sublimation pressure p_.
in the model be maintained at the adequate constant value dur-
ing each stage. Failure to satisfy this condition will not

affect seriously the results at the beginning of the process
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as, in general, p_  + p will be small as compared to
c lm

\Y
2

Po ¥

but, near the end of inflation, the pressure due to the residual
gases has dropped to only a small fraction of its original value
and hence Pim will not be negligible as compared to

Yo
po \Y)
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APPENDIX A
TEMPERATURE AND SUBLIMATION RATES

1. Temperature of the Satellite. - The temperature of the

balloon satisfies the differential equation

d d
dT dw _ da e
MC gt a " aF ~a& (126)
where

M= MS + M is the total mass of the balloon
€  (including the chemicals) (gr)

C is the specific heat of the whole

P balloon (including the chemicals)
(erg gr-l°k-1)
is the rate of change of the absolute
temperature of the balloon (°K sec-1l)

dT

dt

Ng is the latent heat of sublimation of
the chemicals (erg gr-1l)

dw

dt

is the rate at which the chemicals are
sublimated (gr sec~1)

dqa is the rate at whichlthe balloon ab-
dt sorbs heat (erg sec™ )

dqe is the rate at_ which the balloon emits
dt heat (erg sec™ ™)

The rate at which the balloon absorbs heat from all sources
(direct sun radiation, direct Earth radiation and reflected

Earth radiation) is given by1

%da _ [1 + 2a_(1 - \/1-k2) (F. (B) s oE 31:3_]0 as'  (127)
dt E R 2aE ag 5°s
where
ap is the Earth albedo (aE = 0.36 approximately)
k e
RO+HS

6.317 x 108 cm approximately)

RO is the Earth radius (R0

Clemmons, D. L., Jr., The ECHO I Inflation System, NASA TN D-2194.



H is the altitude of the satellite orbit (cm)

B is the angle between the radius vector of
the satellite and that of the Sun from the
Earth center

FR(E) is the relative Earth reflected energy
incident on the satellite which can be
taken approximately as

=\ = =, T
Fe(B) = cos B (0< F< D)
is the absorptance of the satellite skin to
Earth radiation
a is the absorptance of the satellite skin to

S solar radiation
CS is the solar £adiation constant (CS = 1,3953
x 106 erg cm™4 sec-l)
S is the area of the meridian cross section of

the satellite

The rate at which the balloon emits heat is given by

== = e, 0 ST? (128)
where
Eq is the total emittance coefficient of the

satellite skin
is the Stephan-Boltzman constant
(¢ = 5.71 x 1072 erg cm™? sec™! °K-4)

S is the surface area of the satellite

Q

T is the absolute temperature of the satellite

By (127) and (128) Equation (126) can be written

dT dw _ 4 4
M Cp It + %S IF " &, O S(Tl T) (129)

where

4 _ l-a_ a C.a !
T, = v/ {1 + 2a,(1- Vl-kz)(FR(a) + ﬁ G_E} =8 g— (130)

S
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If in Equation (129) we set Ag = 0, i.e. there are no chemical
substances to be sublimated or, in other words, all the heat
accumulated in the balloon is used to raise the temperature so
the skin will heat up at the highest possible rate, we obtain
dT 4
)

= 4
MCp IE = EGCS (T1 T

The sample calculations below have been carried out for the
PAGEOS satellite with the following data.

(131)

Data
Sphere radius Ry = 50 ft = 1524 cm
Skin thickness h, =5 x 107 in. = 1.27 x 107> cm
Skin density bg = 1.33 gr cm_3 .
Skin mass M, = 47R] h_pg = 5.115 x 107 gr
Modulus of Elasticity E = 6.6 x 10° 1b in. 2
= 4.55 x 1010 ay cm™?
Number of pleat folds n; = 418
Initial equatorial radius a = 2n‘Rl/nl = 22.91 cm
Initial length 2L0= ra = 71.97 cm
Deployment length 2L1= TRy = 4.788 x 103 cm
Altitude of orbit H, = 822 n.m. = 1.523 x 10% cm
Solar absorptance ag = 0.10
Earth absorptance ap = 0.03
Thermal emittance e, = 0.03
Launch temperature T, = 75°F = 297°K
Specific heat Cp = 1.3 x 107 erg gr-1 °K—l
Then
kK = 6.371 = 0.808

6.371 + 1.523

1 - Vi-k? = 0.411

7':See note page 59
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Taking the maximum value for FR(E), FR(E) =1, i.e.,
assuming that the satellite is on the Earth-Sun line, we have

1.3953x10%%.10 s°

4 [ 1-.36 0.03
T.% = |1 + 2x.36%.411 (L + )} 10 5'
1 4x.36 0.10° |y 03x5.71x10"0 S
)
- 1.099x10M g—
€6° 0.03x5.71x107° -18
-2 . - - = 2.576x10
P 5.115%x10"x1.3x10
a) Beginning of deployment
s =4 alLy[V2+ log (1+V2)] = 7.694x10 cm?
8 a L
§' = —2 = 2.136x10° cm?
L 11, 2.136 _ 10
T,% = 1.099x10"'x £:32 = 3.051x10
TO4 = 297% = 7.781x10°
%% - 2.576x10" 18 {B.OSlxlOlO - 7.781x109] 7.69%x10°
= 4.505){10-4 °K/sec
b) End of deployment (beginning of inflation)
L, L, 2
L 2 loge EI + 1+ fI
S =4aly 1+ L—°)+ T
1 (o)
Ly
= 4.474x105 cm2
8 a L
s' = —-Ee-ék = 1.425x10° cm?
T14 = 1.099x10%1 x %{2%% = 3.499x10%0
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T we get

Assuming T o

dT -18 10 5

dt

2.576 x 10 {3.499 x 10 - 7.781 x 109} 4.474 x 10
= 3,137 x 10-2°K/sec

c) at the end of inflation

s = 4WR12 = 2.919 x 10’ cm?
s' = wRy? = 7.297 x 10° em?

Lo 11 0.7297 _ 10
Tl = 1.099 x 10 W = 2,747 x 10

assuming again T =T we get

2.576 x 10”18

|
I

2.747 x 10%0 - 7.781 x 109J 2.919 x 10/

1.480°K/sec

As the present temperature T 1s larger than To’ the tempera-
ture when the canister opens, the actual rates of change of
temperature will be smaller than the above computed values.
Moreover, in the above calculation we did not consider the sub-
liming chemicals which will increase the mass M and the spe-
cific heat C and consequently reduce the rate of change of
temperature with time. Moreover, the sublimation of the chem-
ical powder will require a certain amount of heat which will

further reduce the value of dT/dt.

2. Rate of Sublimation of the Chemical Compounds. - If in
Equation (129) we set dT/dt = 0, we obtain

d 4 4
e qE S €, O S (Ty - T (132)

i.e., all the heat accumulated in the satellite is used to sub-
limate the chemicals or, in other words, the chemicals will be

sublimated at the highest possible rate.
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Let pC,V be the pressure due to the sublimated chemicals
and the volume of the balloon at time t. Then, assuming per-

fect gas,
R
PV = & Tw (133)
o

where

Rg is the universal gas constant (8.3149 x 10’ erg-Mol'l-°K'1)

M, is the molecular weight of the compound (gr-Mol-l)

Assuming constant temperature, we have that, in order to keep
a constant pressure, the rate of change of volume must be

4

-~ R T R Teoo
dv _ dv* _ dw _ 0 (T," - T4)S (134)

dt ~ dt M_P, dt M NP,
If the actual rate of change of volume is larger than the above
value, there will be a drop in the sublimation pressure.

The sample calculations below have been carried out for
the PAGEOS satellite using benzoic acid as the subliming com-
pound and the following data.

Temperature T = 300°K
Molecular weight M, = 122.12 gr Mol-l(from Table 1)
Latent heat of sublimation A = 5.60 x 10° erg gr-l(from Table 1)
29.595 - 8223 -2

Sublimation pressure p. = e : 300 = 8.89 dy cm

The other data are the same as in Section 1 of this Appendix.

Hence
R, T€, 9 _ §.3149 x 107 x 300 x .03 x 5.71 x 107
My Rs Pe 122.12 x 5.60 x 10° x 8.89

~loy-4

7.028 x 1072 cm sec

™ = 8.1 x 10%°k*
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TABLE 1
PHYSICAL PROPERTIES OF SOME ORGANIC COMPOUNDS

19

Molecular log..p(torr) log p(dy cm-z) Latent heat of
Weight 10 X e Sublimation
Compound Formula gr/Mol =a- = A - % Kcal/Mol 109erg/gr
. Acetamide C2 H5 N O 59.07 9.09 3066 28.134 7060 14.0 9.94
. Benzoic C7 H6 O2 122.12 9.73 3571 29.595 8223 16.3 5.60
Acid
. Naphtalene C10H8 128.16 10.75 3616 31.949 8326 16.5 5.40
. d-Camphor  Cy4H;s0 152.23 8.41 2645 26.571 6090 12,1 3.33
. Anthra- C14Hg 09 208.20 14.31 6604  40.146 15206 30.2 6.07
quinone
. Anthracene C14H10 178.22 11.15 5401 32.870 12436 24.7 5.80

a b A B




a) Beginning of deployment

7.694 x 10° cm?

S' =2.136 x 103 cm?

Tl4 = 3.051 x 1010ex*

S

10

V- 7.028 x 1077 [3.051 x 1000 - 8.1 x 109] 7.694 x 107

1.212 x 10° cm3 sec?!

while the rate of change of volume due to inflation is

& -0
b) End of deployment
S = 4.474 x 10° cm®
§' = 1.425 x 10° cm?
T,% = 3.499 x 10%°
§¥i = 7.028 x 107° [3.499 x 1010 - 8.1 x 109} x 4.474 x 10°
= 8.455 x 107 cm®/sec

while the actual rate of change of volume is

6

v - _ 7.731 x 10 cm3/sec.

dt
¢) Beginning of inflation. The shape and size of the

balloon are the same as for the end of deployment, hence

%%E = 8.455 x lO7 cm3/sec

while the actual rate of change of volume is

v - _ 4.729 x 106 cm3/sec

dt
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d) At 5 percent inflation (Equatorial diameter = 0.05 x
Final diameter).

S' = 0.050 x 1.566 x 7.297 x 10° = 5.714 x 10° cm?

S =78'"=7x 5714 x 10° = 1.795 x 10° cm?

T, = 1.099 x 101} x Q3704 = 3 498 x 10100k

S = 7.028 x 107% [3.498 x 101° - 8.1 x 10°] 1.795 x 105
= 3.391 x 108 cm3/sec

while the actual rate of change of volume is

%% = 3.426 x 108 cm3/sec
e) At the end of inflation
s' = WR12 = 7.297 x 106 cm2
s = 4WR12 = 2.919 x 107 em?
T,% = 1.099 x 101! 3L L = 2.747 x 10104
%%1 = 7.028 x 107° [2.747 « 1019 - 8.1 x 109] 2.919 x 10’
= 3.974 x 109 cm3/sec

while the actual rate of change of volume is

10

v _ 2.074 x 10 cm3/sec

dt
The values of %% above have been calculated on the assump-
tion that the pressure due to the sublimation of the chemicals

remained constant during the whole process.

It can be seen, that during the deployment stage, the rate
at which heat is accumulated in the satellite is larger than
what is required to maintain the sublimation gas pressure. On
the other hand, the rate of change of temperature during this
stage 1s certainly less than the calculated values for the skin
alone which were at most a few hundredths of a degree per second.
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It seems reasonable then to assume, that during the few seconds
it takes the balloon to reach full deployment, the pressure due
to the sublimation of the chemicals remains constant and the one
due to the residual gases varies according to Boyle's law.

During most of the inflation stage the rate of heat accumu-
lation is smaller than the amount required to just keep the sub-
limation pressure constant. To calculate the actual pressure in-
side the balloon,'we determine the rate of sublimation of the
chemical from Equation (132)

dy _ 0% (r,* - 1) (110")

dat A
S

Assuming that the rate of of sublimation remains constant dur-
ing a short time interval At, the amount of gases generated

during said time interval will be:

g oS 4

pw = —S5— (1= et (135)
Let P> V. be the pressure and volume of the balloon at time t,-
At time t41l = &, T AL the partial pressure due to the gases
already in the balloonat t = t, will be
' Vn
Pot1 ~ Pn Vn+l (136a)

While the gases generated during the time interval At will give

a partial pressure (Equation (133):

R T Aw
1" P g
P+l = ™ Y (136b)
o n+l
Hence the total pressure at t = Cotl will be: . L
' v, RgT sOcS T, - T
Poyl = Phir] * Py = P + At
n+l n+l n+l n Vn+1 MO Ag Vn+l
(137)
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Note. - After this Appendix was submitted, we received
information that the actual altitude of the PAGEOS orbit will be
4250 Km and the actual temperature close to 140°F instead of
1523 Km and 75°F as used in the calculations. The higher alti-
tude will have the effect of reducing the amount of heat received
from the earth and hence will reduce the value of Iy, while the
higher temperature will increase the value of T and p.- Hence,
the rate of change of temperature dT/dt and the rate of subli-
mation of the chemicals dw/dt, hence dV*/dt, will be smaller
while the actual rate of change of volume dV/dt will be larger
than the calculated values. Consequently, the assumption that
the temperature remains constant will be even more valid.

59



APPENDIX B
COMPUTER PROGRAMS AND NUMERICAL EXAMPLES

Computer Program for the First Stage Deployment Time

1. Purpose.- The purpose of this program is to calculate
the time for the first stage deployment by evaluation of the fol-
lowing integral (Equation (20)).

A=L A=L
t = f da = f _d7‘__ (138)
.\/GI(%) + CIL(2) (L)
A=L A=L
A ... dummy variable for L
a=2A
(L) =\/GI(7\) + CI()\), where CI(A) = f CII(a) da (139)
a=L
(o]

GI(A) ... explicit function of A (i.e. the part of (L)
which can be integrated explicitly from L)

CI(A) ... integral function of A
CiI(a)... the part of 1 that cannot be integrated
explicitly

The particular form of (i) used in this study, given by
Equation (28) is an explicit function of A hence, CI(A) = O.

If at some future time a different formulation for (i) is
developed which cannot be entirely expressed as an explicit func-

tion of A, (i.e. CI(A) # 0) the program has the option to handle
this case readily. '

2. Input.- The input consists of:

Balloon parameters:
(a) Modulus of elasticity of the balloon skin. (E)
(b) Thickness of the skin. (HS)
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(¢) Inside diameter of the canister. (DC)

(d) Total weight of the balloon including
the chemicals. (W)

(e) Diameter of the fully inflated balloon.
(o)

(f) Number of accordion folds. (NAF)
(g) Number of meridian pleat folds. (NPF)
Pressure parameters:

(a) Pressure of the residual gases inside the
balloon at the beginning of the deployment
stage. (POR) This value can usually be set
equal to the residual gas pressure in the
canister.

(b) Sublimation pressure of any chemicals
present inside the balloon. (PCC) In
view of the discussion in Appendix A,
this value is assumed to remain constant
during the entire deployment stage.

Output controls:

(a) Number of intermediate time print-outs for
one case (including the final time print-
out for the first stage). (JJ)

(b) A set of percent deployment values corres-
ponding to each value of JJ in 3(a) above.
(CL)

For example, if four intermediate time
print-outs of the first stage are desired,
JJ=4, CL=0.125, 0.25, 0.5, 1.0. Note: the
decimal equivalent of the percent is read
in as input (e.g. 50 percent is read in as
0.5). The range of input values should not
exceed the following inequalities;

2 DC <

T Im'.(l + GAM< CL =1,

where the lower value corresponds to the
beginning of deployment just beyond the
singularity.*

* See following section (Integration Controls) for description
of this singularity.
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NIM)

Integration controls:

The following four control variables (GAM, N, IS,
are for controlling the integration loops of the first

stage. Suggested values for the control values are:

Each

GAM = 0.01

N = 30

IS =0 (If CI(A) = 0, IS must be zero)
NIM = 30

of these four variables is described below.

The integral, Equation (135), evaluated by this
program has a singularity of the first kind at L = I, _.
In the neighborhood of the singularity (i.e. from L

luat i

.
it hae heoen ava
e LA I [T AL Wy ¥ A

to 1T + )
~— s ].40 L} (—/
the integration routine begins after the singularity
(i.e. at L L, + €). The computer variable GAM is

related to € by the relation € = GAM-L,.

The outer integration index N 1is related to
the total number of integration intervals by the
following relation: 6:N-JJ = total number of inte-

gration intervals for one case.

The inner integration switch is directly related
to CI(2»). The meaning of the expression CI()\) (given
by Equation (136) has already been explained. 1If
CI(A) = 0, then set IS = 0; if at some future time a
different expression for L. is derived such that
CI(A) # O, then set IS = 1, and rewrite the ACC, CII

and GI cards in the Fortran deck accordingly.

The variable NIM relates to the integration in-
terval of the inner integral given by Equation (136).
The total number of integration intervals in Equa-
tion (136) (at a = L) is given by 6-[NIM + 2]. If
IS = 0, NIM is not used by the program; if IS # 0
a suggested value for NIM is 30.
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SUMMARY OF INPUT CARDS FOR FIRST STAGE

Text Computer
Variable Variable

Definition and Units of Input Format

D POR
“ 0
Pe PCC
E E
DC DC
hS HS
W W
D1 D1
T TP
N NAF
ny NPF
JJ
T TP
N
IS
NIM
GAM
L/Ll CL

END OF [integer part of (1 +

Residual Gas Pressure (torr) E
Sublimation Pressure (torr) E
Modulus of Elasticity (psi) E
Inside Diameter of Canister (in.) E
Skin Thickness (mils) E
Total Weight of BRalloon (includ-
ing chemicals) (1bs) E
Diameter of Inflated Balloon (ft) E
E
Number of Accordion Folds I
Number of Meridian Pleat Folds I
Number of Time Printouts I
Average Temperature of Balloon(°F)E
END OF CARD
Quter Integration index I
Inner Integration Switch 1
Inner Integration Index I
Singularity Percentage Control E
END OF CARD
Percent Deployment 8

(8 per card)

%] carps

10.5
10.5
10.5
10.5
10.5

10.5
10.5
10.5

E 10.

There are, therefore 3 + [integer part of (1 + %g)] cards of

required input for operation of the first stage program.

63



3. OQutput.~- The first part of the output includes the in-
put which is then readily available for checking and reference
purposes. The ratio of the spring force of the elastic folds
to the initial pressure force is printed (FBI) which gives a
measure of the relative strength of these two acting forces.
Also the ratio of the initial residual gas pressure to the
chemical gas pressure (PB) is printed.

Finally, JJ groups of the following five quantities are
printed:

PRESSURE Current internal pressure inside balloon (torr)

ACC Current acceleration at tip of balloon (ft/sec/sec)
STRESS Current hoop stress at the equator (psi)

VELOCITY Current velocity at tip of balloon (ft/sec)

TIME Current time in seconds

LENGTH Current value of L in feet (L 1is one-half the

balloon length during deployment).

4, Cutoff.- The program arrives at a normal exit and calls
for a new problem. At the end of the last problem the program

stops.

5. Method.- The integration method used was 'Weddle's
rule”.2 Briefly the method breaks the integrand into groups of

six intervals. The typical six interval region is given as:

x=D + 6h
F(x) dx = %ﬁh [f(D) + 5-£f(D + h) + £(D + 2-h) + 6.£(D + 3-h)

x=D
+ £(D + 4-h) + 5-£(D + 5-h) + £(D + 6-h)]

6
The error over this interval is less than ) %ﬁ%—
is the sixth difference, as compared to say the 1288 accurate
hé%— , where

where 66

Simpson's rule where the error is less than

64 is the fourth difference.

2 John Todd, '"Survey of Numerical Analysis,' Mc-Graw Hill Book
Co., 1962, p. 6l1.
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The basic six interval formula is given,however, by combin-
ing like terms it can be written as a double summation over a
6+h*N span (where N 1is any integer > 2).

x=D 4+ 6°h°'N

. m—N £=7
F(x) dx = —m 5 G, Q£ + h-[m-e -4+ Tmz])
= m—l £=1
x=D
for n > 2
where
/5\
1
6
Gﬂ = % Tmﬁ = 6N+ 1 m=1, § =17
2 =0 all other m,n
1
/
sz = 1/2 m=1, 4 =6
=0 m=2,3,...N, £ =17
=1 all other m,#

With reference to Equation (135)

f(x) corresponds to % = 1
(L) GI + CIL
D corresponds to L_ + €

D + 6-h-N corresponds to L

where € is a small distance from the singularity which exist
at L0

The value of the integral in the neighborhood of the sin-
gularity is calculated in the following way:

X=LO + €
t8 = = 14
L Ya) - Q)
where X=2A L
Q) - QL) = [ e [F(X)-(l - 22+ 2'az-p(x)] dx
L v

65



Let

AN =L, +ty
d = d‘y
Then
Y=€
t = dy

E ¥ -
o) Vo, + ) - Q)
Expanding -Q 1in a Taylor series:

L} lz_ 1"
QLy, +v) = QL)) +vQ' (L)) + 5 Q") + ...

where the primes denote differentiation with respect to the ar-
gument. Neglecting the second and higher powers of < we obtain:

t é-f dy - 1 ‘[8 dy _ 2\/;- - Nc:
£ V@)Y Ve 4 Vv Va'@) a

T2 N
_ﬁ—(po+ Pc)

2
Q' (L) = P12 [po + pc]

The te value is added to the time obtained by the numerical

integration.
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6. Samnple problem.- The PAGEQOS balloon will be used as a

sample problem.

“Pa;ameter Variable Value
Residual Gas Pressure POR 1.0 torr
Sublimation Pressure PCC 0.01778 torr
Modulus of Elasticity E O.66x106 psi
Inside Diameter of Canister DC 26.5 in.
Skin Thickness HS 0.5 mils
Total Weight of Balloon W 147.5 1b
Diameter of Inflated Balloon D1 100 ftc
Temperature of Balloon TP 100°F
Number of Accordion Folds NAF &5
Number of Meridian Pleat Folds NPF 418
Number of Time Printouts JJ 4
OQuter Integration Index N 30
Inner Integration Switch IS 0
Inner Integration Index NIM 30
Singularity Percentage Control GAM 0.01
Percent Deployment CL 0.125, 0.25, 0.5, 1.0

Result: Time for first stage deployment equals 6.98 sec.

The printout sheet for this sample calculation can be found on

the following page.

* This value is not used by the program whenever IS = 0, there-
fore it is immaterial what value is inserted for NIM.
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89

POF= 0,10000000E ¢1 PCC=  0,17780nn0F-n1 F=  G.46n%0000F ne DCS
ws  N,1475200GF 03 Dl= 0,10000000F A TP= C,1D007009F 03 NaFs
NE 30 8= 0 NIMZ 30 GAM= N, 1nN00DNNFeN}

FB1= 9,222&8577¢ 01 PBz 0,177800nNE-M

PRESSURE= 0,130244498 00 {TORR)

ACC=  0,30855452F 01} (FT/5ECsS0,3
VELOCITY= D0,1475%6203E 02 (FT/SEC)
TIME= (.9R929700L 00 .(SEC) LENGTH= 0,98179133E 01 (FT)

PRESSURES 0.,T740)12246E«C] {TORR}

ACC= 0,98358355F 00 (FT/SEC.5Q..)
VELOCITYS 0.,15856432E 02 (FT/73EC)

TivEs  0.16264091€ 01 (SEC) LENGTH=  0,19635R27€ 02 (FT)

PRESSURES (.45866123k=01 tTORR)

ACC= 0,39443395¢ 00 (FT/SEC.SQ,)
VELOCITY= 0,16567252E 02 (FT/SEC)
TIME: (0,28334027t 01 (SEC) LENGTH= 0,39271653E 02 (FT)

PRESSURE= 0+¢31838061E=01 (TCRR)

aCC= ©0,28375219t 00 (FT1/56C.5C4)
VELOCITY= 0,17329612¢ 02 (FT/SEC)
TIME= (©,51477191E 01 (SEC) LENATH= A ,7R543306E 02 (FT)

Ge26500000F 02 HS=

85 NPF=  4ls8  Jy=

STRFSS= Ge56720347F 0} {(PST1}

sTREgg=  N.64463362F 01 (Pl

STRFSSZ  0eT79949453F nl (Psh)

STRESS=z 0411092160F n2 (PSI)

0.5000000NE 00
4



7. Block diagram variables.-

€
VEL ... L (velocity at tip of balloon)

k=CLi

t ... time accumulated in region of singularity

J D qu - 5B T T 6,0,
VGI(n) + CI(A) o TR A
A=CL; _,

where

TAU = CL;_{ + H-(m'6 - £ + T_

2)

CL; = CL;_4
6N

H =
CL corresponds to the text variable L

a=2A

. NN
CI(TAU) = f CII(a)da ~ QQUAD = >-HH
= p=
a LO
where
ALP = CLO + HH:(p*6) - q + Tqu
_ TAU - CLO
HH = =N
Qqu, TTPq have the same meaning as ng, Tmz

CLO corresponds to the text variable Ly-

1
\/GI(TAU)+CI(TAUS}

7
Zﬁ é;le'Qqu'CII(ALP)

Note: The program operates in the C.G.S. system of units,

however for convenience, the input and output are

in more familiar units.
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BLOCK DIAGRAM NOTATION

ARITHMETIC STATEMENT

DO LOOP
DECISION
r READ READ INPUT
PRINT WRITE OUTPUT

<::> CONNECTION
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MAIN DEPLOYMENT PROGRAM

( READ INPUT

INITIALIZE
PRELIMINARY
CALCULATIONS

SET QUAD = tg¢
TIME

1]
(=)

1

GI

15 SET NN

Cl =0

: -V GTTeT )
VELOCITY =V GL+CI QQUAD

R |

QUAD

/J) CI = QQUAD

TIME = TIME + QUAD

PRINT

TIME, PRESSURE, LENGTH,
STRESS, VELOCITY,
ACC
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cL

FIRST STAGE COMPUTER PROGRAM LISTING

C TTMF FOP FTEST STAGE RaL. CPENTMG
DIMENSTICN G(R0Y «CL(OM
30 pEAD (Sql)POFqPCC;Eg“CH’*SquDI‘TFQ HEF, NPFaJJaNgISa
IMIMGAM
L FORMAT(RF10,5/315/315sR10.5)
SNRENNES!
FEAN (S«2N0) (CLIJY ottt
700 FORMAT(RF10.5)
WRITH(Aa20)YPORGPCCAEADCHSaWaN1 ¢ TRy MAF G NPF o JJoNeT50
1 NIMa.(AM
20 FORMLT (1H] o 4HPORT e E 16 e By 2 Y o 4HPLCToaF102R 42X 4 2HEZ9E]164F 42X ¢ IHNC=4F 16
1aBa2X ¢ 2HHEZ g F 1A Ra2X/1HO e 2HWE e F 1A RePX13HDIZ«f 164842X+3HTP=F 16,2
a2 X i HNAE =g TR g 2X e BHNPF T 154 2Y e 3HJJ= 9 TS/ 1THO W 2HNS e 15 92X e 3HIS= 4 152X
3 4HNIM= (154 2X 0 4HGAMZ CE1g,. 30
P'I:B-l/-il‘:’QZﬁS
FNAFSMAF
FOR= 1334,tP0R
PCC= 1334,%#0CC
FNPF=NPF
UPF=24 . 5P Ta11/FNPF
CLO-— nf"""7o51+/12-)
PalRM = 4 #PTHCLO/(WHAR3.6)
Fl='7”““§5?%PI**3*E*U1*HS/(3-GFNPF“FNPF)“533".Q21
AQZDI=SNOT (2, / (FMPFOFNAF) ) “30. 48
FBlz F1/7(? tAARARSPOP)
PGB = PCC/POR
CLFL=¢3.9405]11
N ages viz=2.J4J
995 CL{K1)= 23,9404D18CL K]}
WRITF(A49961FB14FB
996 FORMAT(IHQsaHFRIZ«F 16 842X o3HPR=GF16,8//14//1777)
B7 =+.409614662
RZ =+2.£3150274
CZ =+7.05571611
BZ =+5,74780591
EZ =+1,R727244%592
CCC=PI##3up N #FNPFOFNAF##2SHGH®3/96, 7 (,0344774)
Cll=,29R4552
ALP = ,45694658
TIME = G,0




€L

G(ly=5,
GC(2yr=1,
(3yzh,
G(gy=l,
-(51=5.
Glhr=?.
f{Ty=1,
FLN=M
SMzh45%7, 4
EPs= caMaCLD
CLt))= CLD +FPS
PRALT PAR + P(CC
NA 102 71=1e0l
IF(TT«1) 30143014300
QA= SOPRY (EPSHSM/(PIaPRARTALNLAACD })
GO THh An?
AMAT=AD, D
GO TN 3Qp
nECLITD)
He (CLUTTI+1)=CL Tty Y /7 Lg s BF LMY
DO 1900 M=1.M
DO 109 L =147
FLM= M
FLL= L
JF(1=M)?1431.21
T=0.0
GO 1O 949
IF(T=L)21441421
THh EFLN +1.0
nn TN 99
TAlL = D+H&(FLMEA, =FLLAT )
FLA=ALNG(TAD/CLD)
PRFS3= ennaCLO/TAay+ PCC

FLBLY = TAn/CLFL
FLBLO = TAU/CLO
FLORL = CLO/TAU
FLOLY = CLO/CLFL

GlpT= 7.“#A*AA*(POP“FLG+PCC+(FLFLO-1-})* PaL M
IF (LLF&CLFL=TAU)250.2514251
GIET=PaLPMECCCH#CLl1% () ~FLGRL Yy#uR (2. 2CLO»CLO)
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P 1T 2

rg =N 2?2
750 GIET=0a4a| AM2CCC/ICLORCLN)#(C11 4,68 (), ~FLOLY/ZAL ) #82= " HAZEF L AKL #%?
19 ({rLBLI/ZALP)I#82=1,) <+ (AZ+R72FLOLIY S (FLOABL)YS(FLBLI/ZALP=Y,)
2=(B7+C7+FLNL)IYRFLOLI®ALOGEFLBLY ZALPY +(C7+D22FLOLIY® (FLOL1) &
3(FLRL]= aL® ) = 5RIN72+F2HFLOLLYEFLOL Y
4 (FLRLI##2<A L roa2) « E7/3, SF{NLIS(FLELI#23=RP##3))
?S2 61 =CGIPT « GIET
[F(18)20142024201
202 Cl=n.0
IF(1=M) 30543064305
306 1F(7=L) 305,+307.30%
207 PRINFz=PEESS/13734,
YLRLI=“cL (1141} 7CLFL
XLBLNT CL{TT+1)/CLO
YLORL =" CLA/CL(TII+])
IF(ALP#CLTL=CLITI*+1))255,254.256
256 ACC=2¢P1/IWH453,6) 3 (COCHCLI/ZHCL{TT+)) ™23 (1. =XLORL)
10R#*xt ORt +PCEY) ) 73044k
GO 10 287
25% ACC=Z.%*Pl/(W¥453.6)¢(CUCH(A7 = RZ#XLBLI+CZNXLPL1®92« L7aYBLY®#23
1+ E75XLPLYI®®4) Z(CL (T T41)892) # (1., =XLORL) +2.%AA%ARAG(PARGXLORL +PC
2C1)730.48
257 CONTIKNF _
STRES=SPEESSHAAVCL(TI+) )8, 0057102/ (CLFLSHS)
WRITE(A43INA)PRTORGSTRES,ACC
30R FORMAT(1HD aGHPRESSURESE1h s 23X e AH(TORR) 45X ¢ TH3TRESSS+F1AaRaAX45H
IFSIY/ZIHNe4HACCS ok 16, By IXg12H(FT/SFL .00
GO YO 3ans
701 FNTM= NIM
NNSFNIMH(TAU/CLGJI*] )0 (2= TRAUICL (JJ+1)) +2,
FLNMN=NN
HHS (TAU=CLN) 7 (6 ¢FLNN)
0QuUAD =n,
g0 1Nn1 MMz ¢ KN
DO 10} LL=1.7
FLMMz M
FLLL=LL
IF(1=MM) 22432422
2?2 TT=0,n .
GO TN 98
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SL

32 IF(T~LL) 27242422
42 TT=AHFLNN+1,0
G0 YO an
98 ALP=N+HH2 (FLMMBE,=FLLL*TT}
Cli=rapLbmMun,p
PRESSE PORaCLN/TAU+ FCC
59 JF(TI=LIFrAeTT«Fh
17 IF(M=1)66eRA160
BE IF(7=LL)AAaTINy6HA
210 TF(MM=1) 664311466
~11 PRINKSPEESS/1334,
XLBLYI= cL(TI+1)/CLFL
xLPRLD= CLTI+1)/CL0
YLORL= CLA/CLITI=1)
IF(ALPYCLFL «(L{TI+1))2%8257.25%9
259 ACCTREPT/IR®AS3.0) P ICCC»CLYIZICL T T+ )2t =XLOBL) +2.7ARAMAAR(P
10REXLNRL +PCCY) /30,48
€0 10 PO
7OR BCCE2.%RT/Z{WH653,6)8CCCHIAT = R7SXLBLI+CZoXLRLL1®H2- PRYXLRLY®53
1+ E70YLKHL Y284} /LCLITT+112532) S+ (]e=XLOEL)  +2, 2 8A%ARG(POARSX OKL +2(C
201 /20,478
260 CONTINUF )
STRESSPRFSS®LANCEL 1114 1) =,0057)10F /(M LFL*HS)
WRITE (hy 3Q)FRPTOR,STFESACE
39 FORMAT (1HNeFHPRESSUREZAE16+R03X4aH(TOFD) o5 s THETRESSTeF 1A 845X« 5H (
1IPSTY AIHO WGHACC= s 1b . F e X Y2HIFT/SEC ST ) )
GO TP A4
66 IF(LL=A)1514150,4157
151 @Q=1,0

60 70 101
150 IF (MM=1)151,153,151]
153 QQ@=.5
G0 TC 1M
152 IF(MM=1)15441514154
154 0Q=0.0

GO To 1n1

101 QQUAN=RQNAD  +3,%HH/1U, (G G(LL)yy*CY ]
Ci=QQnAn

205 Fzl, /8087 (GI+CIY
IFl1=M)Ea3eb
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IF(7=1)YAh4Deb

VEL = 1./F

VELFS=VF| /30,48
WRITE (Ae32)YVELFS
FORMAT (1IH «9HVELOCTITY=«F16.R2e3X+8H(FT/SEC))
GO 7O A

IF(L=€)1A141€0e162
021.0
GO TN 100

TE(M=1Y1F1el630161

@=,5

GO 1O 100

IF{M=e1)Y1E401610164

Q=0,0
-0 TC 100

QUATIZA 4 /1C M {EEG (L)) #F+LU D
TI“E = Ot1an + TIME
CURLE=CL (T11+13/730C.48
WRITF(AZID)TIMELLURLG
FORMET {1Mm g SFTIMES ¢ FE 16 e 842X aRH(SFC) e X g THLFNGTHT «FEL1E 842X e4HIFT))
COMTIMNNE

60 Y0 36
FND




Computer Program for the Inflation Stage

1. Purpose.- The purpose of the program is to provide a
solution of the differential equation

W = p x sin 4 - Fg + = (Fy x cos ¢) (39)
where
Fg = Fg(x) (43)
, s
Fy = 5sia g [EZ(_'[ Wy dS] (44)
o

subjected to the constraints

ax? + dy2

= ds? (42)
X < Xq (42)

independent of time and the initial and boundary conditions

x(£=0,8) = x_(s) (140)
y(t=0,8) = y_(8) (141)
x(t=0,s) = y(t=0,s) = 0 (142)
x(t,s=0) = x(t,s=0) = ®(t,s=0) = 0 (143)
y(t,s= TRy) = y(t,s= T Ry) = ¥(t,s = TRy =0 (144)

2. Method.- In order to carry out the numerical solution
of the problem we substitute the continuous system by a discrete
system of masses my interconnected by rigid, massless links,
which are determined in the following way.

Taking into account that the area of the spherical surface
between two parallels is proportional to the distance between
the parallel planes we divide the radius R; of the full sphere
into an integer number K. The mass of each portion per unit
angle of parallel will then be

* _ 1 M
S N (145)

77



where M 1is the total mass of the balloon (inéluding the

chemicals). Assuming that the mass between two successive div-

ision points, k and k+l, is linearly distributed along the chord,

the mass m can be substituted by the two masses

2x + x
* _ m¥ 1,k 1,k+1
m = - AS
k 3 xl,k + Xl,k+1 k,k+1

applied at point k, and

*  _omr *1 kY 2%

m . = AS
k+1 R

applied at point k+l. Where

Xl,k’ xl,k+1 are the radii of the parallel circles of

points k and k+1 in the full sphere.

ASy w4l is the length of the chord joining points k
and k+1 in the full sphere.

The total mass applied at point k will then be:

Doom MLkl 2% AS I s 0 S 19 0
k 3 X1 k-1 T *1,k k-1,k * 3 Xk T Xk k,k+1

where the first term in the right hand side is the contribution
from the mass m* between points k-1 and k and the second
term the contribution from the mass mw* between points k and
k+1. Finally

oo [Pkt Pk o 2L *en o
k 127K Xl,k—l+ xl,k k-1,k Xl,k+X1,k+l k,k+1

(146)
On account of symmetry we need to consider only one quadrant.

In particular, we have

_ M
M, = 127K AS0,1
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for the mass at the pole and

+ 2R1

+ R1

M *1,K-1

= AS
g 127K Xl,K-l

K-1,K

for the mass at the equator with Ry = x Analogous consid-

1,K°
erations yield for the horizontal component of the pressure act-

ing at point k the value:

Ho=§ [(X 1t 25 )y _gm Vi) (2t x4 ) (9 - Yk+1)]

(147)
where
Xp-1> ¥k» ¥pyq are the radii of the parallel circles
of points k-1, k, k+1 in the balloon
at time ¢t.

Yk-1> Yk> Yy 2are the distances to the equatorial
plane of the points k-1, k, k+1 1in
the balloon at time ¢t.

P is the total internal pressure in the
balloon at time t.

Under the same assumptions, the distance from the centroid of

the element k, k+l to the polar axis will be

e I8 il 9 2 (%o %)
3(k1 K T X | k+1) k+1 k

=X

X ekl (148)

in the deformed state.

The total pressure acting on the corresponding parallel

plane will be

_ —2
Vi, ktbl T P T K 14l

and the membrane force in the meridian direction acting on the

element k, k+l1 will have a vertical component per unit angle

Yk~ Yk+1 1 2 k .
F e P X - m.y (149)
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Hence, its horizontal component will be

T = F X Fetl” Pk (1 p X2 - %{: n
kktl = Fg TGkl B8 |2 P Rkl T L e U
(150)

Under the same assumptions, the resultant hoop force acting at

point k will be:

N
Fo = Fa(x ) = K17k (x-x, ) Fp(x)dx +
ok = FolMd) = T 7% ) k-1) Fo
k-1

X

k+1

+ ZE:ZEil (x -x) Fpo(x) dx
(xk_l_l-xk)2 k+1 2]

XK
Assuming that FQ(X) varies linearly in each interval we obtain

finally

Fo o= Fo(x) = K17k [F (. 1) + 2F.(x: )
ok = Fo(xy) = —%— |Fo(xyq 0 k}

b 0L fop oy 4 By (x,) (151)
6 0 "k 0 "kt+l

where I% (x) 1is given by Equation (79).
The numerical solution is obtained by replacing the differ-

ential Equation (140) by

|
where
G = P, 7 -1,k (153)
and the constraint Equation (l43) by
2 2 .2
(K17 )"+ O™ Y)™ = 85 11 (154)
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To determine the position at time =t 1 At , we

assume that the pressure terms remain constant during the time

interval Atn and calculate:

_ °'n n-1 n~1 n-1 n-1 n-1 -1 -1 -1
He =50 | (el + 290 D (ep — v )+ (x0T + n D G vy

P
=n _ n —n 2
Pt =5 (R 1)
with
—n ol Pt *Lelon-l 01y
k,k+1 k 3 +x k+1 k
> (2 1% k1)
where
Vo
pn = pC + pO Vn—l is the internal pressure at time tn-l
P is the constant part of the pressure
(sublimation pressure).
P, is the initial wvalue of the variable
part of the pressure
Vs is the initial volume
V-1 is the volume at t = to1
n-1 n-1 . .
X s Yy are the coordinates of point Lk at
t=t¢t (closing value of the itera-

tion process for At _1).

It is understood that the term "initial" refers to the beginning

of the inflation stage (end of deployment).

As shown in Appendix k, the gases generated by sublimation
were not enough to compensate for the change in volume during
most of this stage, so a more realistic expression for the
pressure will be |

VO

Va-1
where P1 is the total pressure at the end of the deployment

stage.
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e AT A a2

The iteration process is carried on as:

2
At
—1 Dn_l LX) 3 -1
(a) xﬂ’m = XE' +x T AL+ xﬁ m _ZE

(b) ngm ?e(xﬁ’m)

k+1 9
n, 2 > ,
(e) yy "= E: -\/;Sr-l,r-(xg m-x?-T)
r=K

n~-1 -n-1 “n,m-1

@ 70" %‘[‘27‘ Gt e N R J

( ) Ftl’m = Xﬁ’;}{l - Xﬁ’m ?n - § --n’m.
¢ Fr ki yom _ gn,m | Tk kT L B Vr
k k+1
n,m _ =N,m - =11,
(£) 6 = Filrmr - Filax

and repeat steps (a) through (g) until convergence is attained.

In the above expressions

gﬁ‘l = gﬁ‘z + §§-1 Atn_1 is the value of the horizontal
velocity of point k at t=t__q-

‘n~1 _ sn=-2 wn-1 s .

Yk = =Yg  t ¥y Aty is_the value of the vertical
velocity of point .-k at t=t__1

wn-1

yE is the value of the vertical

acceleration of point k during

the time interval At_ ,=t -t o |
(closing value of thB }eeRatioR™ i
process for At_ ;). |

The first supra index n refers to the time interval under con-

sideration while the second m refers to the iteration cycle.
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It was found that the convergence of the iteration process
improves markedly by averaging the calculated values with the
ones obtained in the previous iteration cycle and hence, steps
(d) and (g) were modified accordingly.

The process starts at t = 0 by assuming as initial value
for the horizontal acceleration

1
21,0 Hye
*K T om
k

i.e. neglecting the terms Fok and G, as compared to Hy in
Equation (127). As shown in Section III, Fg(x) attains signif-
icance only towards the end of inflation. While the balloon is
very elongated in shape (at the beginning of inflation), the
meridian forces Fd will be almost parallel to the polar axis
and their horizontal component will be small. The pressure p
will have its maximum value and its direction will be almost
perpendicular to the polar axis, hence, Gk will be small and

Hk will be maximum.

It was also found that the convergence of the process was

improved by assuming as a starting value the iﬁ’o acceleration
in the x direction during the nth time interval, the value

obtained by linear extrapolation, thus:

..1’1,0 _ ..n~1 - .n-1 _ =2

*k *k *k *k
or

in,O _ 2-}-{n-l _ in-2

k k k

We select the time intervals At so that the equatorial radius
increase approximately by a constant preselected percentage -y
during each time interval. To this end we determine the first

time interval Aty by setting

1,0 0 1 st 0
.1, 0 1
xK’ = xp + xK’ —— = (L + vy) Xy

on account of symmetry and the very elongated initial shape,
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2 x0 2
1 L X ] 3 P
XK (o]

where p, is the value of the internal (residual plus sublima-

tion) pressure at the beginning of the inflation stage.

The subsequent time intervals are determined by the formula

t
n-1
At_ =y
n a1
where
xn—l _ Xn--2
a = 2 K K
n-1 Xn-l 4 Xn--2
K K

is the percentage increase (referred to the mean value) of the

equatorial radius during the previous time interval NSO

ST = R S
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Definition

DT2
DIN1
X(K), E(K)

< g PR

P(K)

XP

Ve

K), EP(K)

X1TP(K), ELTP(K)
X1TPP(K), ELTPP(K)
X2T(K), E2T(K)

X2TPM(K), E2TPM(K)

X2TS (K)

CPX(K), CPE(K)
F(K)

FTH(K)
FMM(K)
PN

First time interval
n-th time interval

Current iterated value of the
coordinates

Previous iterated wvalue of the
coordinate

Value of the coordinates at time
t = tn-l

I
rt

Velocity components at time t

Il
t

Velocity components at time t

Current iterated value of the
acceleration components

Previous iterated value of the
acceleration components

Value of the horizontal acceleration
to start the iteration

Coordinates in the final sphere

Horizontal component of the meridian
force

Hoop Force
Mass

Internal pressure at time t =t

Aty
At
xkn,m, ykn,m
n,m-1
*Kk
n-1 n-1
X, Vi,
, n-1 , n-1
an , ykn
, n=2 -2
an , ykn
qu,m’ ykn,m
n,m-1 n,m-1
k > Yk
an,O
*1,k* Y1,k
Pkl
Fox
T
P




3. Input.- The input coasists of:
Balloon parameters:

(a) Total weight of the balloon including ';

the chemicals. (W), 1b

(b) Diameter of the fully inflated balloon.

(c) Total thickness of the skin. (HS),mil R
(d) Modulus of Elasticity of the skin. (YE), psi
(e) Poisson's ration. (PORT)

(f) 1Initial weight of sublimation chemicals.
(W00), 1b

(g) Inside diameter of the canister. (DIAC), in.
(h) Number of meridian pleat folds. (NPF)
(1) Number of accordion folds. (NAF)

B e s e 1. 31 SRR

Pressure parameters: ‘

(a) Residual gas pressure at the beginning
of the deployment stage (usually set equal :
to the initial gas pressure in the canis-
ter prior to deployment). (PORST), torr

(b) Chemical gas pressure. (PCC), torr
This is the vapor pressure of the subliming
compound in solid-vapor equilibrium; a typ-
ical value can be obtained from Figure 15
of the reference?

(c) Average temperature of the balloon. (TP),°F
(d) Altitude of the Orbit. (HSS), km

(e) Aspect ratio. (FBB). This is the geometric 1
view factor which represents the relative |
earth reflected energy incident on the
satellite.

(f) Absorptance of the satellite skin to earth
radiation. (ALPE)

(g) Absorptance of the satellite skin to Solar
radiation. (ALPS)

(h) Chemical latent hfat of sublimation. (FLAMS),
ergs - (gm-mole)”

(1) Total emittance of the satellite skin. (ESPO)
(j) Chemical molecular weight. (FMOLW), gm/mole

= WU

S

3Clemmons, D. L. Jr., The ECHO I Inflation System, NASA TN D-2194
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Control parameters:

(a)

(b)

(c)

(d)

Percent increase of the equatorial radius
during each time interval (GAM2). This value
adjusts the At during each time interval
such that the equatorial coordinate X(KK) will
move outward approximately GAM2 percent. The
decimal equilavent of the percent is read in
as input (5 percent is read in as 0.05). See
3-C for suggested values and also its relation
to KK.

Closing percent change in X coordinates between
two successive iteration cycles (CGAM). When

the percent change in each X coordinate between
two successive iterations reaches this prescribed
value, the iteration loop is considered converged;
however, the iteration process is forced to go
through a minimum number of cycles before it
tests the above mentioned coordinate percentage.
The decimal equivalent of the percentage is read
in as input. A suggested value for CGAM which

has resulted in successful runs of the program

is 0.001 (i.e. 0.1 percent).

Number of mass point divisions along the meridian
is (KK). The magnitude of this number sets geo-
metrical increment of the mesh size for the nu-
merical process, whereas (GAM2) (description 3-a)
sets the time increment. Suggested values for
these two parameters which have given successful
runs for a wide range of problems are: KK=19,
GAM2=0.05, however, the program is not strictly
required to use these exact values. A range of
values which also should give successful runs are:

15 <« KK < 35
0.06 » GAM2 = 0.025

The larger the number of points (KK), the smaller
the percentage (GAM2) used about the suggested
values KK=19, GAM2=0.05.

Frequency of time printouts (MMM). The total num-
ber of time printouts is approximated by:
log  (NPF *NAF/8)
Integer part CAMY M D + 2
For example, if every other time calculation (lead-
ing up to the final result) is desired, set MMM=5,

and for the Pageos sample problem the total number
of time printouts would approximately be:

loge(4441.2)
Integer part 005757

+ 2 = 18 Print
outs
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SUMMARY OF INPUT CARDS FOR INFLATION STAGE

Vagizgle SQ?E:§§§ Definition and Units of Input Format
W W Total weight of Balloon (including E 10.5
the chemicals) (1b)
Dy D1 Diameter of Inflated Balloon (ft) E 10.5
h HS Total Skin Thickness (mils) E 10.5
E YE Modulus of Elasticity of the Skin
(psi) E 10.5
v PORT Poisson's Ratio E 10.5
co W00 Init?al Weight of Sublimation
Chemicals (1b) E 10.5
D, DIAC Inside Diameter of the Canister (in) E 10.5
n NPF Number of Meridian Pleat Folds I5
N NAF Number of Accordion Folds I5
END OF FIRST CARD
P, PORST Residual Gas Pressure (torr) E 10.5
P, PCC Chemical Gas Pressure (torr) E 10.5
T TP Average Balloon Temperature (°F) E 10.5
Hg HSS Altitude of Orbit (km) E 10.5
FR(E) FBB Aspect Ratio E 10.5
op ALPE Absorptance Qf §atellite Skin
to Earth Radiation E 10.5
g ALPS Absorptance gf §atellite Skin
to Solar Radiation E 10.5
%S FLAMS Chemical Latent Hgat of Sublimation
(ergs - (gm/mole)-1) E 10.5
END OF SECOND CARD
€, EPSO Total Emittance of Satellite Skin E 10.5
FMOLW  Chemical Molecular Weight (gm/mole) E 10.5
GAM2 Percent Equatorial Radius Increase
for Each Time Interval E 10.5
CGAM Percent Coordinate Change Between
Two Successive Iterations E 10.5
KK Number of Lumped Masses IS5
MMM Frequency of Time Printouts I5

END OF THIRD CARD

There are, therefore, three cards of required input for the
operation of the second stage program.
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4. OQutput.~- The first page of output consists of the input
which is then readily available for checking and reference pur-
poses.

The second page consists of the starting time, the total
pressure (torr) at the start of the second stage inflation, ratio
of the starting volume to the final inflated sphere volume, and a
list of the initial coordinates which are nondimentionalized in
two different ways, that is, division of the coordinate by Ry
(radius of inflated balloon), and secondly, division by the coor-
dinates of the fully inflated sphere. The headings for these var-
iables are respectively, TIME, PRESSURE, VOLUME RATIO, X/Rl, E/R1
X/CPX, E/CPE.

The remaining pages of output will be similar, therefore on-
ly a typical pair of pages will be described. The number of these
intermediate printouts leading up to the final result depends on
the input number MMM described in the input section. If the solu-
tion converges, the page containing the final result will have
the words COMPLETE SOLUTION written at the bottom of the page.

Also listed on the final page only (just above the words
COMPLETE SOLUTION) are the maximum membrane stresses which occur
at the completion of the inflation process. These three values
are respectively, POLAR STRESS, EQUATORIAL MERIDIAN STRESS,
EQUATORIAL HOOP STRESS (note only one value is listed for the
pole since the polar meridian stress and polar hoop stress are

equal). All stresses are in psi units.

The written material on a typical pair of pages consists of

the following.
First of the pair:

@ The time accumulated during the second stage up
to the time of the printout, (it must be empha-
sized that this particular time value does not
include the time accumulated during the first
stage)

The current total pressure (torr)

The ratio of the current volume to final volume
of the fully inflated sphere
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OE T o]

s Ry R A B ARy

h th

s

e The number of Nt time interval and the M

iteration

A 1list of the current coordinates, nondimensionalized two
different ways (i.e. division of the coordinated by Ry (radius
of the inflated balloon, and secondly, division by the coordinates
of the fully inflated sphere), and finally a list of the meridian
stresses (psi) are tabulated. The headings for these variables
respectively are, TIME, PRESSURE, VOLUME RATIO, N, M, X/RI, E/RI,
X/CPX, E/CPE, STRESS. The initial coordinates, the results of
the first time interval,and the results of the final time inter-

-

val are printed regardless of the value of MMM.

s Em,

Computer Variable Text Variable Notation é
X/R1 x/Ry f
E/R1 y/Rqy ;
X/CPX x/xq {
E/CPE y/yq :

As the sphere inflates in time, X/CPX, E/CPE, and VOLUME
RATIO all approach unity.

e s e

Second of the pair:

The horizontal and vertical accelerations (ft/sec/sec) and
velocities (ft/sec), and vector velocity magnitude are
printed. The headings for these variables respectively are,
X2T, E2T, X1TP, E1TP, VELM.

Computer Variable Text Variable Notation i
X2T X g
E2T y |
. \l
X1TP X ;
ELTP y

VELM \/ic2 + 92

5. Cutoff.- Upon convergence of the numerical solution, the
program arrives at a normal exit and calls for a new problem, at
the end of the last problem the program stops. At the end of each
converged solution the words COMPLETE SOLUTION are printed.

If the solution does not converge the problem is terminated
in one of three ways described here, and then calls for a new
problem; at the end of the last problem the program stops.
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NOTE-A

This type of failure is indicated on the printout sheet
by the words "PROGRAM WILL NOT CONVERGE ON M-CYCLE,

SEE PROGRAM WRITEUP, NOTE A, STOPPED AT M= __ , N = __ "
indicating the iteration cycle M and the time interval
N, at which the failure occurred. This type of failure
may be corrected by making CGAM larger. This failure

should rarely occur in the usual range of parameters.
NOTE-B

Failure in this case is indicated on the printout sheet
by the words '"PROGRAM WILL NOT CONVERGE ON N-CYCLE,
SEE' PROGRAM WRITEUP NOTE B, STOPPED AT M = ___ , N =
This type of failure should rarely, if ever, occur and

would probably be due to erroneous input data.
NOTE-C

Failure here is indicated on the printout sheet by
the words "PROGRAM FAILS KA TEST, SEE PROGRAM WRITEUP
NOTE C, STOPPED AT M = ___, N = __ ." 1Indication of
this type failure means that the AX generated was
larger than the corresponding arc length AS, for a
large number of points on the meridian.* This may have
happened in one or combinations of the following ways.

(1) GAM2 too large for a given KK or KK to

small for a given GAM2, which moves the

coordinates out too large a percent, for
a given time interwval.

(2) GAM2 too small for a given KK or KK to
large for a given GAM2, such that numerical
roundoff errors in the computer cause
failure.

L

“ If AX » AS for only a few local points, the TEST BRANCH
loop shown on the block diagram makes provisions for this
case without failing the entire process.
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6. Sample problem.~- The PAGEOS balloon will be used as the
sample problem for the inflation stage.

Parameter %g?gggiz Value

Total Weight of Balloon W 147.5 1b !
Diameter of Inflated Balloon D1 100 ft é
Total Skin Thickness HS 0.5 mils \
Modulus of Elasticity of the Skin YE 0.66x10° psi §
Poisson's Ratio . PORT 0.475 |
Initial Weight of Sublimation Chemicals WOO 10 1b %
Inside Diameter of the Canister DIAC 26.5 in f
Number of Meridian Pleat Folds NPF 85
Number of Accordion Folds NAF 418
Residual Gas Pressure PORST 1 torr"
Chemical Gas Pressure PCC 0.003981 torr
Average Balloon Temperature TP 100°F g
Altitude of Orbit HSS 4250 km ;
Aspect Ratio FBB 1. !
Absorptance of Satellite Skin to Earth %

Radiation ALPE 0.03
Absorptance of Satellite Skin to Solar

Radiation ALPS 0.1
Chemical Latent Heat of Sublimation FLAMS 0.56x1010ergs- 1
Total Emittance of Satellite Skin EPSO  0.03 (gm/mole)
Chemical Molecular Weight FMOLW  122.12 gm/mole :
Percent Coordinate Increase for Each At GAMZ 0.05 i
Percent Coordinate Change Between Two

Successive Iterations CGAM 0.001
Number of Lumped Masses : KK 19 )
Frequency of Time Printouts MMM 5

Result: Time for second stage inflation - 5.23 sec
A condensed printout sheet for this sample problem can be

found on the following page.

Hence the total time for the first stage deployment plus the
time for the second stage inflation is the following sum:

Total Time = 5.15 + 5.23 = 10.38 sec
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START OF NEW PROBLEM tINPUT DATA)
HALLVON wEIGHT (INCe CHEM,) (LBS)S
AALLCON DIAMETER (FT)= 0,10000000F 03
SKIN THICKNESS(MILS)S  0.50000000F 00
MONpLUS OF ELASTICITY(PS1)x 0,66000000€ 06
PCISHNNS RATINS  0,475%00000F 00

INIToWT.OF SURLJCHEMICALS(LAS)a 0.,10000000€ N2
INSILF PI&MGUF CAMISIFR (In)s 0.2asnnoobf 02
HUMBRELR pF PLEAT FOLDSE a5
NUMAat L ¢F ACCChN FLLuUSS 41R
KFSTMIAL GAS PRFSSURE (TORKk)= N,10000000E 01
CHEMICAL GAS PRESLSURE (TOKR)IE 04177A0L0DE~NL

HAM LOON TEMPFPATUR: (f)=  0,100nun00F 03

ALTITunF 0F AROITIKMIS  0,42500060E N
ASPFLT RATIN (F{N)) = 0e1UN0NOO0E 0L
ARSANR ,NF $587.5KIN TG EARTH RAQNTAT,.=
aasnKi, nf SAT.SKIN TU SNLAR RAQIAT,.=
LATENT s al SUBLI ATEOMIERGS/ZGRAM)S
1OTAL p»IT.COFFLOF SAT,SKINS  0,30N00000E=0)
MALECHL AR WETOMT(G(AMS/MOLEYE  0.12212000C N3

REMAIMILG Al PROGLAM COMTROLL VAPLADLES

0,14750000€ 0%

Ga30000000E=0G)
0,10000000€ 0N

0.56000000E 10

AT L, gNAnUN0NE=]

ChaYE 0, 1u00L000N0F N2

KKz 19

FEH 5

TiMez  0,U600L0U0L=3R FRESSUKFs 0,3185%336%F«01 VOLUME RATIO0= 0,2657673ak=03

PT.NUMRER x/R) E/x1 X/CPX E/CPE
] 0,00000000E-38 0,15707963¢ 01 0. 170000008 01 0,15707963¢
4 0,49318396L-02 0,12359001¢ 0} Gel4935779L=01 0,13093412¢
3 0,6R743136€£~02 0,10549141¢ 01 0,14954511E=01 0,12328950¢
4 0,82945435¢E-02 0,98511076€ 00 04149643348k =01 0,11835645¢F
ke 0,94314804E=12 0.9911z2250E 0N 0,14970A63E=01 Uall4T4607E
- 0.,10378h47E01 0,40700981F 0N 0,14975722E-01 U,11174%23E
! 0,11134360E-01 0,7297276%¢ 00 0,1437959AE=01 0.10969573¢
H O.11877442E-01 0,%574€6354¢ 0N Del49A2A3AL=D) 0,10785790¢
4 Y, 12476RT6E=U] 3,.54903095¢ 0N Je149R56390=-0) U,10634025¢
1" 0.12%95052E=01 U,523%981T7¢ On N,14930124E-01 0.105083%84E
1t Ds13641%928E=0) 0,460155399€ 00 0,14590373E-01 0,10404926L
12 0,136264239£«01 N,39942523F 09 0414992445E=01 0,10321105¢
11 0,14147721F =01 0433;R349NE 00 0.14994381E«0) 0,102%55613¢
14 0.16414R62E=0) n,28144007F 0N 0.16996213E-01 0.102983%19¢
1> 0,14630199E01 V,22409309¢ 0N 0,14997967E=01 0 301m1729¢
19 0,14795517€=01 fi,16744A08¢ 0N 0.149994636-01 0.,1N143n95¢
V! 0.14912480E=01 N,11136101¢ 00 0.1%001320£-01 0.10245745¢0
1 ¢ 0.,14982219t=01 0,55584173E-01 Gea1%00295%4E-01 0,1N576063E
19 0,15005393E=01 0,00000000F =34 0,1%005393k =01 V. 10000N000¢
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TIMEx

N.52326431€ 01

PRESSURE

CHEMTCAL WEIGHT REMAINTNGE

Pt NUMPER

£ X =TT P~

PY  NUMRER

~
DO PNI P o\ -

X/R1

0,00G600N0NE~
0,33020303E
0,45134911F
0,53426273¢
0.61254719¢
0.67318463€
0.72630A52E
0.77212925¢
0,81249502¢
0,84790045E
J.AT915366E
0,90681252¢
0,93137382¢
Ce9%315n84E
6,97220515E
0,9AL 38996E
0.,99407762¢
0.99r61795E
0,10000009E

x21

Q.U0000000E=
G,000NG00ME-

f1e5%5340642E
~C.60102179E
=1.16586533C
«0.,80849257E
~0,812349060¢F
~0,12873974¢
~0¢16374964E
«0e1916027TAE
~0e19191626E
«0.1842371A4L
~0e202R83994E
~N.26599187E
~0.3521C451E
«0oul404l96E
«),42215923L
~Js3%65¢101E
~C,3TTIGU9SE

PopeR STRESS tkSDN=

kL
34
G
01
[*X3
01
0)
02
02
02
0?
02
02
02
0?7
02
02
02
[¢hd

7418332959E~02

0.96333543¢ ol

3a
on
00
on
(14
a0
0o
on
00
a0
0n
0o
09
oe
Gn
0o
0o
no
ut

E/R}

0,10262930E
0,976A0823¢
V,A9866421F
N,ARI286164E
0,77400184¢
U,71570)42¢
(e55956736F
0,6036R319¢
0,%4642034F
0,49339222F
0,83563749¢
0,38612275¢
©.32983081F
0,2T54RBEIE
0,22185711¢
G,16671667F
0.11113A70F
0,55566980F=
f,N000G000E=

FeTv

0,061°00000E-

«0,1163579¢E
w0, 441808544F
-0 ,44155526E
=G,42868811¢E
=0,45940T7A¢E
-0, 44R1TAGKE
«0,48%22214E
=0,43854424F
=0.49302R35E
«0,46731110E
=0,43169T7A¢L
-0,39785343E
«0,34707404E
=0,26266242¢
~0,15R8TR4TE
-0,58A4%173E
«0.,601292¢1¢€

0,0nC0CONYE-

Ne23T10354E 04

tn,.#ER.STRESS (PS1)=,

EQ.nwOOF STRESS (PSINE

ComeL EYE SOLUTICN

0.20796AG1E 04

0430232343 ne

3a
0
g
n?
u?
02
ne
02
02
0?
0?
a?
n2
ik
02
0?
01
3n
kL]

VOLUME RAT!0z

13}
3A

X/LPX

0,10000000L
0,17000000E
0,9%187332E
0,97229375E
0,97231393E
0.97136224E
€.97277001€
5,97400%03E
0,97588150E
0,97704428E
0,9R042 794E
0,91344199E
De9RT14K14E
0,9915914SE
0.97664405E
0,17000000E
¢.1n000000E
0,17000000€
0.11090000E

X1TP

0,06n09000Ng =
0,6r0NONNE-
C.90806423E
0,17623537¢
0.24T%2722€
0,322725259¢
0,468858)4¢
0.,579%9370¢
0,7%182384¢
0.,94035734E
0,12071565¢t
0,14949980€
0.,1R83%6312F
0.,226456417¢
0.273V127%:
0,32645496F
CodT671249¢
0,41322111¢
0,426R3055¢F

FINAL STRESSES

94

s
as
00
01
a1
01
01
01
01

0+97887176E 00 Na

- E/CPE

0,10268930¢
0,102848945E
0,10119137¢
0,1000644 3¢
0,9966493n¢
0,99277a70¢
0.,99148937¢
0,99035)148E
0,99008641¢
0,93021%22;
0,99097846F
0,99256900F
0.995%5996¢
0.,99992912€
0,10056507¢
0,10139512¢
0,1M227129¢
0,10572792¢
0,10000000E

ErTe

«0.95TA0TISE
-0,95730795%E
=U,16007107¢
=0,14949167¢
«0,13863454¢€
=0,12952596¢
«0,11900697E
«0,1n845A02¢
*=0.96839T7I8E
=0,8452620N¢
-0,T71949263¢
=0,59475192¢E
=0,449N8284¢
«0,34022593E
~0.21382185¢
“0,11994462¢
=0,34258337¢€
-0,36803009¢ =
1,00000000¢=

01

01
3R

83

s 1

STRESS

0.21165A16E
2,15581504¢
U,12921068¢
D INEVLEHTE
U. 102836628
0, 34324604058
Ue71211150L
0,871%65956E
U,8439A003%
U,R)ALNEI2¢E
0,74331944¢
D.75227646AE
0s71629A824¢
Ue06992564%
J.,693246110
Ja891656380k
D.uTI535%45¢
0,939124)6E
0.93912416¢

VvELM

Ne35730795¢
Ve I5730795¢
0e160380462¢
04150111142
04240823450
0.133470450€
041271171970
0.42497329L
0.,3122%0823¢
04227193%6%E
Gela070255:
UelA1Ns175¢
9.1894b244E
04227027925
04273940650
0,32662K0063L
0, 316724077
Deul322127:
Os42663055¢E

01
5
gz
02
3

02
n?
G2
32
c?
0?
0?

Ve

Ty

0z

0z

07"

P g s

T




MALN INFLATION PROGRAM

l READ INPLT
Y

INITIALIZE;
COMPUTE
P

!

TIME = 0,DT2,P1,XP(K),EP(K)
X1TP(K)=0,ELTP(K)=0,X2T(K)

SET INITIAL VALUES

A
4
E(K) | B @ A —4—f X® < Mep+L < X2T(K)
O
(%]
©
EXIT F N
@) nxaricn
O,
L 4
E2T(K) — F(K) . G(K) »- FTH(K)
PRINT: >0 N SET:
TIME,PRESSURE, Nel+l #= DTwL, BN, XB(K) ,EP(K)
VOLRE RATIO,

X(K)/R1, E(K)/R1,
X(R)/CPX(K), E(K)/CPE(K),
STRESS, X2T(K), E2T(K),

XITP(K), ELTP(K),
VELM(K)

XiTP(K) ,E1TP(K}
X2TS(K) ,E2T(K)

TEST
BRANCH

EXIT
BRANCH

TEST BRANCH

COUNTER
HEHERE

IX(Kﬂ)-X(K)

- X(K+T)-X(K)
X(keD) = 20R) + FREHTEES

STOP
SEE NOIE A

PRINT
FINAL RESULTS



SECOND STAGE COMPUTER PROGRAM LISTING

C SECNNN S:AGE BALLOON TNFLATION PRESSHRE MOUIF.

DIMENSTON F(50) e X (S50 aFP(S5N) e XP (SN} 4FZ2T(50) 4 X2T(S0)Y+X1TP (R0} ¢2(5N)
1eF(R0) o X1ITPPUSO) «FTHISO)Y 4G UED) o XCHUIBNI «S(SN) 4EITPPISN) FMM(SN),
2ELTP (SN o XMNUSO ) 2 PHI(EN) o CPYINR0) « XMP(S0) «CPELEN) «EZ2TPM(S50) o X2TPM (5
A0 X2TPNL(B0) ++MASS(50) e x2TS(BN} o« STRPESIRE) o XBF1(5C) +ERPEY(R0) « XBCP X
450) yFROPE (RD) +NUMR(S0) o X?2TF (R0) «F2TF(50) + X1TPF (50)sEYTPF{S0) 4027
5PN(50) « VELM(5(])

1 REAN(S a2 ) WeDlaHSoYE «PETaWNDeNTACONPF«NAF,

1PORST 4P aTP ¢ HSSeFRBeALPE s AL P S oFL AMS,

2FSPOCFMOL W4 GAMP e LOAM KX (MMM

2 FORMATI(TFI0.54215/RBE10G+5/74F10,5,21K8)
WRITF(Aa?DYWeDlaHS e YE«PORTsWOOGDIAC ¢NFF e NLF

20 FORMAT(1IH]45X,33HSTART (OF NEW PROBLFM (INPUTY ['ATAYZ//
11HO0¢5Y « 34FALLOON WETIGHT (INC, CHEM,) (LRS)=4t16+8/

2IHO +BY «22HRALLOON NIAMETER (FT)zeFl6.R/
3IHO 4B X ¢ Z1IHSKIN THICKNESS(MILS ) =F16.RS
GIHO WS X 42 THMNDULUS OF ELASTICTITY(PSY)izeE}R.R/
51H0,57 4 1SHPNISSONS RATIO=,F16.8/ '
61HD«5X e 3IHINIT kT 0F SHBL ,CHEMICALS{LDES)IZ2F 6.8/

TIHO+S5X« 2OHINSTIDE NIAMOUF CANISTER (IN}=4E16.8/

BIHO ¢S Y« 22HNUMEER OF PLEAT FOLIS=.157/
91HD 45 x « ?3HNYMEER NF ACCORNFOLNSZ15)

WRITF (FoR25)PNRSTaPCCe TP ¢ MSCeFBRGALPESALPSGFLAMS

RZ25 FORMAT(

T1HO 4B X4 pOHFESTIIUAL GAS PRESSURE (TORFI=,Fl6.R/

ZIHO 45 Y s P9HCHEMICAL GAS PRESSURE (TORRI=WFl4,R/
31HOGSY + P4ARALLOON TEMPERLTURE (Fy=4FlEt,8/
41HO WS¢ Z2HBLTITUDE OF CRBIT(KM)zeFlheP/

SIHO X Z1IHASPECT RATIO - (F(R)) =,Flfk.8/
61HO 45X« 2EHARSNREBOF SAT,SK'™ T0 EARTH RANIAT.=«E16.87
TIHD.5X« IAHABSORB « OFy, SAT,S¥ IN TO SOLAR PANIAT.=4El6+8/
BlHD«SX o 3IGHLATENT HEAT SURLIMATION(FRULS/GRAMIZLE16.8)

WRITF{ARCR2HIESPOIFMOLWIGAMI qCEAM KK e MMM

R265 FORMAT(

11HO ¢S X e P8HTOTAL EMIT.COEF«OF SAT.SKTN=4E16.87/
21HOD B X4 2AHMOLECULAR WEIGHT (GRAMS/MNLF)I=,Flh.8/

I1HO .5 X s 6OHRFEMAINING 2RE PRNGREM CONTRGLL VARTARLESe/
GIHO+SY « OSHGAM2=4E 16,8/

SIHD W5 X 4 0SHCGAMZ b 1648/
61HD ¢BX «NAHKK =, 15/
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L6

TIHO ¢S Y 4 D4 MMMz 4 1H)
N0 256 JJ=14KK
VELMIJJ1=9,0
E2TPN(14Y=0,0
X2T€(JJi=n.0
E2TFLUN =n.C
X1TPF (S iy=0,0
LlTpF(iJY=0,0
E(Jiy=n.n
yiJir=n,n
FPCIJ)=0n
XPO3JI=0C,3
E2T(Jr=9,0
X271(J4Jy=0,0
Y11e8(inN=0,0
Stdn=t.e
F(Jn=n,0
X1Ter(iJY=0,0
FTH(J =0, N0
G(JJr=n,.n
X6GtJyJdr=n.n
StJdJjrsn,.n
ElTepi23¥y=0,0
EMM (Y =n, 0
F1TRPtU N z0.0
XMN(.JJ)r=9,n
FHI(JD)=9,0
CPX(J)Y=0,0
XMP (U =0,0
CPE(XJ1z9.0
E2TPM{t)1=0.0
X27em{34y=0,0
Y21PM (15 =0,0
FMASS (01 =0,.0
¥2TS(JJ)=G.0
STRES(JY=N,.0
XBRItJY=n,0
tBR11JJ¥=0.0
£BCPECIIY=0.,D

255 YXBCex{(14)=n,0



ITR1G="
TPK = JPR5,5 +(5,/9,)%TP
CCLl=(lo+eT2% (] e=SQRT(]lea(6317./(631T7,+41455))1412)) &(FPFDB+R.*ALPE/(9.
14ALPSYYY®(1,3953E+06 “ALPS/FLAMS)
CC2= ESPO#S,T1E=US #TPKu4/FLAMS
CC3= R.3I149E+0THTPK/FMILW
FMI=W#,1554/7(D1¢#U])
Ri1= 15,2401
PCC=1334,%PCC
FA= 2,.uR]8SQART(2+/(FLOAT(NPFY#FLOAT(NAF) Y}
tB=23,0939#01
P1=3.141%92¢5
PHI(VKY=P1/2.
PHT(11=0,0
CPY(Kr)y= R1
CPX({1l)=0,0
CPE(1)=P]
CPE(xK)=0,0
S{1y=0.0
E2T(K¥)1=0,.,0
E1TP(KK)Y=0.,0
X2T(1)=0.0
X1TP(11=0,0
KS1=KkK=}
DO 703 J =2.KS1
FKR= FLOAT (KK=J)/FLJAT (KK=1)}
EP(J)= RI®ATAN (FKB/SQRT (l.=FKBu&2))
703 XP(J)= FA#COS (EP(J)/R1)
XP(KK)Y= EA
EP(l)= RI1#PI#,5
YP(l)= N.0
EP(KKI= N,0
NTS3=(aLNG(RI/ZXPIKK))/HaAM2Y%]),5
DO 701 J3=2+KK
701 S(33)= S(J3=1) * SQRT ((FP(J3)= EP(J3=1))na2 +(XP(J3)=XP(J3=1))=
1#2)
SIKK+]1)=?2#5(KK)=S(KK=1)
N 700 J2=24 KS1
TAAA=(S(U2)=S5(J2=1))RP1 /4,88 (KK))
700 PHT(J2)=pHI(J2~1) +2.%ATAN (AAAZ(SQRT (1,-AAA%AAA)})
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66

DO 100 I=1es KK
G(1)= 0.0
FTH(IY=0.0
F1TPETY=0,
Xive(11=0,
E(L)=EP(I}
100 x{pDr=xpP(ID)
DO 709 L=2.KS1
CPX(LY=CPXIL=1)+(S{L)=S(L=1))%CO0S ((PHI{L=1)+°PHI(L))/2¢)
709 CPE(L)=SART (RI#R1I~-CPX(L)2CPX(LY)
N0 257 KF=1.KS1
257 XMNIXF)= 2,/3.%(CPX(KF1252+CPX(KF)RCPX(KF+1)+CPX(KF+]1)#3#2) /7 (CPX{VKF
1Y+CPY(VF+1))
XMN (KK Y=XMN({KK=]1)
UO 950 J16A=24+KS1
550 FMM{ Az FMI/Z76+8{{S{Jg)=S{Je~1))%{CP{{jt=1147.
1 «S(JRY) (2.4 CPX(JE)+CPX(JA+]1) 1))
FMM(1)= FM1/6.%5(2)4%CPX(2)
FMM(K¥YYz FMI/3em(S{KK)=S{KK=1) )2 (CPX{KK=1)+7HCPX{KK))
FMR= FMinp]
FKK=KK
VST:U-O
SPRN=O.N
N0 960 J7=1+KS1
SPRN = SPRN+ 2,#(XP(JTV+XP (JT+)1 )15 (EP(3T1=FP (741}
ge0  VST=VST+(XP(JTIR424XP (JT+1) %424 XP (IT+V)SXP(JTVIE(EP(UT)=EP(JT+1))
VOR=2,#P12VS57/3.,
VNl=VOR
SPR=SPRN
POR= PNRST AP To44RI4RIaNTACP2,.56 /Z(VNISFLOAAT(NPF)SFLOAT(NAF) ) &
11334,
Pl =por+PCC
DT2 = SQRT (GAMZH®FMR%#7,/P1)
258 PN=P]
FMaA=0,0
NN 351 L10=1+KK
FMASFHML+FMM{L10)
351 FMASS(LI0)=FMA
TIME= Q.0
WoT=WwNN®453, 6
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001

v585=0,n
™) 267 LM=z],.Ks1
267 VSS=VSS+(CPX(LM)Y#u2+CPU(LM+) oo PX (LY+Y1 ) 2CPY (M) (CPE(LM)=CRE(
1LM+1))
VSP=2.':'PI¢VSS/3-
VOLR=VNAR/YSP
MO 370 JR=14KS81
91) XGGEUJAIS(CPX(JBR)*2:#0PX(JE+1) Y/ (342 (CPX(JBY+CPX(IB+]1) )
XGrR(KX)= XGG(KK=1)
O 271 LR=14KK
271 NUMRBR(LR)Y=LP
"0 268 [ P=1,.,Ks81
ERRYI(LPI=E(LP) /R]
7263 EBCPE(LPI=E(LP)/CPE(LY)
FBCRE (YY),
ND 269 LO=24KK
XERI(LT)Y=XILQ) /K1
269  XBeRX(LOY=X(L)Y/CPX LY
XECPx(l1y=1,
FT=pM/13134,
WRITE (£ 4266) TIMEsPT ¢ VOLRs (NUMB{JK) o XPRKLI(JK)Y«FERI{JK) «
1YXBCPX(JKYJFRCPE(JK) ¢ JK=1 KK
265 FORMAT(IHY aBHTIMEZ 4164842 X s O0HPRESSURESsF1ARy2Xa13HVOLUME F2T10=0
1T 1A R//GXIHPT (NUMBERTILIX4HX/RYTIAX4HE/RLIISXBHX/CPXIIXSVE /CPRE///7(SX,]
22 ¢TXsb4(Fl6,R492X)))
'O 101 N=14NTS3
VNIP=VN]
SPRP=SER
WOTP=WAT
PNP=PN
0 297 ME=24KK
F2TPN(MA) =F 2T (Mg)
297 X2TPN (MBI =X2T (M)
[F(N=1154546
5 DTNI= DhT?2
GO 10 7
6 ALPMl= (X(KK)= XP(KK))/Z(X(KK)+XP(KK})*2,
DTN1= GAMZ2DTN/ALPNI
T DTN =NTN]
FNN=N
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2590

R&H

399

a9h
102
°62
9613

961
391
RZ21

1001

730

1(Kl+1) ¥ (2

JAK=SQRT (FNN+15.01)
MMAY=3% JAK
N0 250 KP=1,4KY¥
X1TPP(¥YP)= X1TP(KP)
ELTPP (K P) SE1ITPKP)
EP(XP)=F (KP)
XP(XPY=X{KP)
D0 1172 M=]4MMAX
DO B8R | 1=224KK
X2TPMLY)Y=X2T (L)
XMP(L1)Y= X(L1)
DO 3%3 L9=]1.¥S]
F2TPMILG)Y=E2T(LY)
K7=1
KT=2
DO R20 X 1=24KK

[F(XRIKY}~CPX(K1)) 10248214821

IF(N=11961+49614962
TF(M=1) G6399634G061

A1) =¥P (K1) +DTNIEXITF (K1) +X2TS (K1) #LTNI*NTNL /2,

6N TO 39}
YP(YK+]}=XP {KK=1])
EPtxK+l)= =EP(K¥=])

Y2TUK )= ((PN/ 6 ¥ T (FP (KL=l =EP(F1) ) (XF(K]I=1)+2,%Xp K1) )+ (EP(K]) PP

X2T(v11=0.0

IF(ITRIR.FQ,1) GO 7O 1001

ITRIG=1TRIG+1
X{K1)=CPX (K1)
TF(rl=k?=1)T73147304731
K7=¢1
KT=k1
G0 THh 73]
COMNTIMUF
GO TO A2n
FTHI(v1)= 0,0
DN N0 K12=KTe¥K
KA=KK=K12+KT

s BXP (K LV4XPUK T« 1IN THIKI) #G(KY))/FMMIKI) s XRTPM(KLI)}) /P,
Y({kK1)= XP(K1)+* DINI=#X1TIP(K])
IF(X(K1)=CPX(K1})R20eP2]14521

+ y2T(K1)# DINIEDTNY/2,



2ot

RC1 nn RAN KR eKX
KLAKRZK A+KRe}
TF((X(YA=])=X(KAKB))®¢Da (S(KA=1)=S{KAKE))##2) R28+2304R30
R 3 CONTINIE
g2 IF(KR=1) B00+800+829
829 IFIKK+1aKA~KE)991,4831,831
&31 ¥RAZKRw]
10 R4N ¥ O] WKBE
KARC= KL+ C=]
KARZKA+¥RA
840 XAKANC)IZ X(KAP) = (S{KAE) =SIKARC)IHINIKAR) =i (KA=Y)) /(S{KAR) =S¢
1¥A=1))
GO TO =00
800 CONTINUF
NN 104 K3=1.kS1
KKY¥ZKK=K3
NSMNX = (SIKKK+1)wSIKKY) ) %22 (¥ {KKK+1) =X K KE))BH?
104 E(evK)= F(KKK+1) +5QRT (0SHNX)
PSIT=FR1-X(KK)
IF(PSTT)I3R143R1,737
737 CONTIMUF
D0 10% K&é=14¥S1
1p% E2Y(Ya)=(( E(K&) = EP(K4)e EITP(KA)SDITNLY 2./ (DTNL#DTNL} «
1 E2TeMiKa)) /2,
TIR JF(MaJAK) 1010411
il DO RRO L2=24KK .
TCHAMT ARS ((X(L2Y=XMP 213 #2.2(X(L2)*AMP(L2}))=CGAN
IF (TCGAM)Y3+94889
839 CAONTINUE
10 QE1)=  «FMM(I)RE2T (L)
DN 10k K532 +KK
106 0(KB)= N(KS=1) «~FMM(KS)HE2T(KS)
FIKK+]1)==F (KK=1)
N0 107 K6=24KS1
107 FIKO)=(X(KE+1)=x{KB) ) /(E(KE)=F (KA+1))u({PN/2 2 (XPIKE)+XGOIKA) S (XP
1(K6+1)=XP(KB) 1) ##2+Q(K6))
F(KK)= =F(KK=1)
FUlY=  XU2)/Z(E(L1I=E(2) ) (24%PN/Ge#XP(2) ip=aFMM (1) 2E2T (1))
X{KK+1l)= X(KKel)
nOD 108 KT=24KK




€01

108 GIKT)= F(KT)= F(KT=1)
IF (MMAY =M} 20042004112
117 CONTINIUE
9 DD 109 KR=K7. KK
109 X1TP(KRISX]ITPP (KB)+X2T{K8)=DTNI
DO 110 ¥9=1,4KS!
110 F1TP(XQ)=FITPP(KTI)+EZTIKI)#NTN]
IF(Kk7=-1)381,381.382
392 El1A=0.0
DO 357 L12=14K2
ElAa=T12« EY1TP(LI2)UFAM(L]12) /FMASSIKZ)
357 FI1TP(K7)=F}A
35% D0 261 LT7=14X2
251 X17P(LT¥= 0.0
DO 262 LAz K7
252 EITPI(LR)= E1TP(KZ)
341 VST =0.0
5PP=0.0
. NN 111 K10=1 +KS)
SPR= SPF + 2,8 (X(K10)*X(K10+1))#(E(K)1D)=E(K]0+1))
111 VvST= yST + (x(K10)ax{(rin)«x(K10¢1)2XAK10+1)+x(K1Q*1)ux(K10))»(
1 E(K1M)=F(X10+1))
VNl= ?,4P1%#VST/3,
XDR1= Y(kK)/R1}
§§S=PI#(30.4B0N]) 252
DELWT ={CC1oSPR =CC24555)Y4NTN]
IFINELWY LF,0,0)UFLWT=0,0
IF(WNGT® «DELWT) BTOBTU,RTY
B70 WGTY =0.Nn
MARK= 3
RRACE =0.,0
GO TN R”71S
R71 WGT = WGTP = DELWT
GO TP A7? _
872 BRCZ = CC3 ¢ DELWY
BRC1 = PCCa@(VN1l=VN]1P)
IF (RRC2=BRC1IETI 0BTV 474
873 BRACF = BERC?
MARK= 2
GO TN 275



RT74 EPACE= R}
MAEK =)
roTe RT7S
BTH PN =( PMPayNLIP +HRACEY/ VNI
VOLR=VNY/VSP
TiIMF=z  TIME+ DTN}
CC 272 Lth=l.K51
2773 STPFS(LTNI=ARS (O0STLHF (LTI (SILD+1 =S I}y A 0L+ ) =X L DNY ) SHXMe
1L My =8y
STRES(ry 1 =STRES(KK=]}
PSIT=RY1=X{KK)
IF (PS17T113,13,12
12 IFINTE3=N12034203,14
101 CANTINIIE
i4 IF(N=1) 272413272
272 TF(1TKIF.FQ,1) GO TC 1005
IF(MODINWMMM} ) 3794153379
100  1TRIG=1TRIG+]
13 N0 275 LF=14KS}
FBRI(LFY=F(LF)/R1
2775 FBCeFE(LFY=E(LFY/7CRE(LF)
FBCPE (KK Y =],
NO 276 LG=74KY
XBRILG) =X (LGY/RL
276 XBCrX(LCI=XA{LG)Y/CPX(LG)
XpCex(iy=1,
PY=PN/I R4,
IF(PSITIO24937,933
937z U0 034 LM=]14KK
X2T(LMY=X2TPN(LM)
Q34 F2T(LMYSFZTPN(LM)
GO T0 Q33
33 U0 230 L S8S=1.KK
Y2TFLS)=Y2T(LS)/73N,48
F2TF(LSY=E2T(LS)/730.48
XITOF (LS)=X1TP{LS)/30.068
ELTPF{LSY=EYITP(LS) /30,48
630 VELM(LS)=SART({XLTPF{LSY“X1TPF(LS)+FITPE(LSYTFITFF(LS))
WZT = WGT/4%53.6
WRITE(Aa20T)TIMESPToVOLRaNeMewZ T (NUMR{OJY oxBRTIES D) sERRPY (S

701




GOt

307

%31

IXBCPX (JJ) o EBCPE(JJY «STFES(UUY s JJ=] kb))

FORMAT (1H]L 4SHTIMES 4E168,2X . “HPRESSUPE=,F1A,8,2X413HVCLUME RATIO=,
1EL6sRa?Ye2HNS 4 T4 92X 2HM= 414
2/7/75%«2ABCHEMICAL WEIGHT REMATNING=Fl6.8

3 //5XQHPT NUMRERIIA4HX/RI13X4HF /F115XSHX/CPXI3XSHE/CPEL12X ¢ 6HST
QRESS/// (X412 ¢TX+S(E16e842Y)))
WRITE(RO3ITYINUMEBLIN) o X2TF L) o E2TF L) o X TPFLJI) aELTEFLJU) o VELM
10JJYedJ=14KK)

FORMAT(1H] 45 YGHP T NUMRERQI 1Y X2T14X3HFE2TIBXa X1 TPI3XSRFITPI3Y4HVEL
IMZ/710TXa124TXe5(E16.8472X)))

279 IF(PSITITAaN«7404295%
740 TKE=SHFMM(KKYUEXITPF (KK =XYTRF (KK

TXM=  FMMIKE)#XLTPF (KK) 5. R

DO 321 12=14K351

TKE = TFE + FMM(IZ2)&#VELM(I?)2a?

TXM =TiM & FMMITIZ2)®XITPF(1Z)

TKE TYF®#3,1415G9%4,/ (We453,.¢)

TXM = TXM#16./(WH6R3,.6)

SWOSO = Botr (Le#PORT}I23,18189aYFabE/((]1,=PORT#a2) % (W/ 38k 4) 2100
10.)

SWO =SORT(SKGSG)

OMZS0= e+ 1458 (Le+PORT) =SQFT 4,424 01,42,4FNRT)#(1.4PORT)+ ()45
1 1.+FQORTY)2u2)

SW2SC = OM2SEoae®3, 141998 YFOHG/ ({1 ~FORTEU2Y " (W/ 38604} 21006)

SW2 =SORT(SV23Q)

POT1=]1.+POPT

ALPG = NMZ2S50/POT1

]

AAG = 28 ()1 .+ (2,= ALPU)®82} 4 (,]125%(3,=ALPM))H¥2
BBQ = 253 (3.=-ALPQ)#TxM

CCQ = =(TxMat2 =TKE)

YMS =(«PRG «SQHTUIBRQRZ#Z + 4,93580%CCR)) /(2. 2AAC)
XMS = TXM & L1252 {3,~ALPQY® YMS

CWi = XMS/SWO

CW2 = YMS5/SW?

SPSC = PT#N1®1IN00.%12,%,0193%/(4,7HS)
SCOFlz VE#2,/((1le=POET™un}un])
SCOF2= ARS(CWO)* POT)
SCOF3= (2,9PNT1=0M250) /7pNT]
SIGN = SPSC +SCOFLIM(SCHF2 + [RS{CW2)E0M2SD/24)
= SPSC »SCOFIB(SCNF2 +,24ARSICWAT(~POTI+SCOF3)))



SIGT = SPSC +5COF1#(SCOF2 + ,SCARS(CWE®(-POTL+PORTHSCUF ) ))
WKITELEeT41)ST160«SIGPOIGT
T4 FORMALT (/277750 41 4HFINAL STRESSES///7/30X«13HPOLAR STRESS (PSI)=,.F)
16,R,/7/710%421HFERWMFR,STRFSS (PS1)=eF1648///710%421HEQ.HOOP STPFS5S |
2PSIVTWF 6, R2//7/77771001THCOMPMLETE SOLUTINN )
GO T
735 JFt=2) 37842944294
284 K7zK7+)
NN 296 M2=L774KK
96 X2TSE(M2) =X T (M2)4#2.,. =X2TPN{M?)
IFiK7=-11101,101437%
378 EPA=0.N0
DN 3%2 Lil=1.K7
E2ASEPL+FMMILTL)ZE2T(LLIY) /FMASSIKT)
352 E2T(¥7Y=E2K
A54 DO AG9 1 6=])¢Kk7
€99 EZ2T(LAY= E2T(KZ)
60 TO 1M}
200 WRITE(RA4201) MeN
701 FORMAT( R1HIPROGRAM WILL NOT CONVERGE ON M=CYCLE.SEE PROGRAM WRITE
1 UP +NPTE Ae STOPPFD AT MZ¢11a2Xe2HNZ13)
20 TN )
203 WRITF(A4704) MeN
20 FORMET( R1HIPROGRAM WIl{ NOT CONVERGFE ON N-CYCLELSEE FROGRAM WRITE
1 UPr «NNTE Py STOPPFD A1 MZe1542Xe2HNZeI3)
GO TN
Gl WRITE{6+499T7TIMGN
297 FORMEY (AREHIPROGRAM FAILS KA TESTLSFF FROGRAM wWRITE UP, NOTE C, STO
1PPEN AT M=T1342X42HN=s1 1Y)
GO 10 1

90T

END
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APPENDIX C
PARAMETRIC CURVES

The curves in this appendix have been determined for two
typical balloons of the following characteristics:

PAGEOS ECHO II
Diameter, ft 100.0 135.0
Skin Thickness, mils 0.50 0.71
Total Weight (incl chemicals),lb 147.5 493.8
Canister Diameter, in. 26.5 28.0
No. of Accordion Folds 85.0 85.0
No. of Pleat Folds 418.0 360.0 .
Modulus of Elasticicy, 1b in-?  6.6x10°  2.73x10°
Subliming Chemical Benzoic Benzoic
Acid Acid
Weight of Subliming Chemical,lb 10.0 52.4

Note on the velocity and stress diagrams.- Figures 8
through 16 are plots of velocity versus time and stress versus
time for the PAGEOS and ECHO II satellites. It should be noticed,
however, that while Figure 8 gives the velocity of the tip (pole)
of the balloon during the deployment stage, which happens to be
the largest velocity at every instant, Figures 12 and 14 give the
greatest of the moduli of the velocities of the points in the

meridian, regardless of location.

Figure 9 shows the value of the hoop stress at the equator
during deployment, while Figures 13 and 15 give the maximum value
of the meridian stress, regardless of position, for the inflation
stage. Moreover, while it is apparent that inflation will likely
start before the balloon has reached full deployment, the present
state-of-the-art does not provide a means of determining exactly
when this will occur. Hence, it was considered that the inflation
stage started from rest, and the initial shape is the one attained
at 100 percent deployment.
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Figures 10 and 11 are plots of the tip velocity and merid-
ian stress at the equator that will occur, if the balloon was
allowed to reach full deployment and if all the kinetic energy
was to be absorbed by the elastic deformation of the skin. This
is a conservative estimate that will certainly give stresses
larger than the actual omes.

Figure 16 is a representative plot of the stresses after
inflation has been completed. The assumption is that all the
kinetic energy of the skin is absorbed by the elastic deforma-
tion and again gives a conservative estimate as it assumes only
two of the numerous modes of vibration, and neglects completely
any structural dampling. The values given by the computer pro-
gram are the absolute maximum that the stresses can attain under
these assumptions, regardless of the time. It must be noticed
that, as the ratio between the two natural frequencies Wy and Wo
is not, in general, a rational number, the time of the absolute
maximum will be infinite. On the other hand, the presence of
structural damping will have the effect that for a large time
the system will come to rest, hence, the calculated values will

be conservative.

Table II gives the tip velocity at the end of the deploy-
ment stage as obtained from the computer program and also the
values of the reference stress

i,
~ /ME i .
wh D, (p

used to adimensionalize the stresses in Figure 11. Table IIIL
gives the absolute maximum value that the stresses can attain
after the end of inflation, as obtained from the computer pro-
gram. These values were used in the plots of Figure 16.
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Figure 8 Tip Velocity versus Time for the Deployment Stage
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Figure 9 Equatorial Hoop Stress versus Time for the Deployment
Stage
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Figure 10 Dimensionless Tip Velocity versus Time at the End
of Deployment Stage
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Figure 11 Dimensionless Equatorial Meridian Stress versus Time
at the End of Deployment Stage
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Figure 12 PAGEOS - Maximum Velocity versus Time for the Inflation Stage
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Figure 14 ECHO II - Maximum Velocity versus Time for the Inflation Stage
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Figure 15 ECHO II - Maximum Meridian Stress versus Time
for the Inflation Stage
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Figure 16 Dimensionless Stresses versus Time at the End of Inflation



125

5
1 4
2 3
2
3
4 ,// 1
100 | 5
)
u
o
ﬂﬂ
: ¥
» y
g ;V
75 | K
"
o ,,
o
2&_ /
3 /
2 /
2 /
) / Residual Gas Pressure Temperature
5 / torr °F
2 / 1 1.0 32
2 50 |- / 2 1.0 100
/ 3 0.5 150
/ 4 1.0 150
/ 5 1.5 150
//
/ PAGEOS
/ ———- ECHO TIIX
/
/
/
25 | /
/
/
0 1 1 1 1 | _ _
1 2 3 4 5 6
t(sec)

Figure 17 Deployment versus Time
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TIP VELOCITY AND REFERENCE STRESS AT THE END OF THE DEPLOYMENT STAGE

Table IT

PAGEOS ECHO 1IT

Residual gas

pressure(torr) 1.0 1.0 0.5 1.0 1.5 1.0 1.0 Q.5 1.0 1.5

Temperature

(°F) 32,0 100.0 150.0 150.0 150.0 32,0 100.0 150.0 150.0 150.0

ii(tt/sc) 16.99 17.33 19.27 19.27 20.29 33.32 33.46 34.35 34.54 34.74

L.
\/%ﬁ— 35 (psi) 2152.6 2195.7 2441.5 2507.4 2590.7 | 9766.0 9807.1  10068.0 10123.7 10182.3
s 71
Table III
= MAXTMUM STRESSES AFTER THE END OF INFLATION
3 (Absolute Maxima)
PAGEOS ECHO IT

Residual gas .

pressure(torr) 1.0 1.0 0.5 1.0 1.5 1.0 1.0 0.5 1.0 1.5

Temperature

(°F) 32,0 100.0 150.0 150.0 150.0 32.0 100.0 150.0 150.0 150.0
g G;x 967.4 2377.0 1877.3 1885.7 1894.0 |1770.0 6561.8 3445.4  3443.6  3443.1
g géﬁ 836.6 2079.5 1649.5 1657.7 1665.7 | 1484.1 5567.6 2944.7  2943.0  2942.5
% cgéi 1251.5 3023.2 2371.8 2380.7 2389.7 | 2327.2 8499.1 4421.2  4419.1  4418.6
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